Mouse astrocytes exhibit agonist-induced functional $S1P_1$ receptor antagonism

Nada Ben Yakoub¹, Tatjana Uffelmann¹, Sarah Tisserand¹, Marc Bigaud¹

Poster Number: P0357

イメイイイイイイ

YYYYYY

 \mathbf{x}

イム人イノ人ノイン

 \mathbf{x}

YYYYYYY

 $Y \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$

¹Novartis Pharma AG, Basel, Switzerland

Poster Presentation at the 8th Joint ACTRIMS-ECTRIMS Meeting, MSVirtual 2020, September 11–13, 2020

Scan to download a copy of this presentation

Copyright © 2020 Novartis Pharma AG. All rights reserved

Disclosures

Nada Ben Yakoub, Tatjana Uffelmann, Sarah Tisserand and Marc Bigaud are employees of Novartis.

The study was funded by Novartis Pharma AG, Basel, Switzerland.

Medical writing support was provided by **Richa Chhabra and Anuja Shah** (employees of Novartis Healthcare Pvt. Ltd., Hyderabad, India). The final responsibility for the content lies with the authors.

Background and objective

- Sphingosine-1-phosphate (S1P) receptor subtype 1 (S1P₁) plays a key role in regulation of lymphocyte trafficking¹
- In multiple sclerosis, S1P₁ agonists such as fingolimod and siponimod induce S1P₁ down modulation (i.e. receptor internalization and degradation) inhibiting the egress of pathogenic lymphocytes to the CNS a phenomenon also known as functional S1P₁ antagonism^{2,3,4}
- However, no evidence of this phenomenon exists in the cells of the CNS

Objective

To investigate the presence of $S1P_1$ -functional antagonism by assessing agonist-induced $S1P_1$ down modulation in the astrocytes using a Ca²⁺ signaling assay

Methodology: Agonist-induced Ca²⁺ signaling Fluorescent Ca²⁺ probe and Fluorescent Imaging Plate Reader (FLIPR)

#S1P (natural ligand for S1PRs), AUY954 (selective S1P₁ agonist), fingolimod (S1P_{1,3,4,5} agonist), or siponimod (S1P_{1,5} agonist) ATP, adenosine triphosphate; Ca²⁺, calcium; FLIPRs, fluorescent imaging plate reader; S1P, sphingosine-1-phosphate; S1P₁, sphingosine-1-phosphate receptor subtype 1; S1PR, sphingosine-1-phosphate receptor

Results Astrocytes pre-incubated with vehicle (n=3 each)

Dose-dependent increase in the intracellular Ca²⁺ signals in response to all tested S1PR agonists, with EC₅₀ values being within the range of 8–70 nM

Ca²⁺, calcium; EC₅₀, concentration of a drug that gives half-maximal response; EC₉₀, concentration of a drug that gives 90% response; fingolimod-P, fingolimod-P, sphingosine-1-phosphate receptor; S1PR, sphingosine-1-phosphate receptor; S1PR, sphingosine-1-phosphate receptor

Results Astrocytes pre-incubated with S1P (1µM) (n=3 each)

Pre-incubation with natural ligand S1P (S1P_{1,2,3,4,5} agonist) did not alter the effects of the S1PR agonists confirming that S1P does not induce down modulation of its own receptors (S1PRs)

Ca²⁺, calcium; EC₅₀, concentration of a drug that gives half-maximal response; EC₉₀, concentration of a drug that gives 90% response; fingolimod-P, fingolimod-Phosphate; S1P, sphingosine-1-phosphate; S1P₁, sphingosine-1-phosphate receptor subtype; S1PR, sphingosine-1-phosphate receptor

Results Astrocytes pre-incubated with AUY954 (1µM) (n=3 each)

• Pre-incubation with AUY954 abolished effects of fingolimod, siponimod, AUY954, and induced down modulation of S1P₁ receptors

In astrocytes, effects of fingolimod and siponimod were principally S1P₁-dependent

Similar observations were observed after pre-incubation with fingolimod or siponimod

Ca²⁺, calcium; EC₅₀, concentration of a drug that gives half-maximal response; EC₉₀, concentration of a drug that gives 90% response; fingolimod-P, fingolimod-phosphate; n.a., not applicable; S1P, sphingosine-1-phosphate; S1P₁, sphingosine-1-phosphate receptor subtype 1

Conclusions

- First evidence of agonist-induced S1P₁ down modulation in murine astrocytes
- Similar investigations on other neural and glial cell types are warranted to establish agonist-induced S1P₁ down modulation as a general phenomenon in the CNS
- Translational and clinical studies are warranted to further validate this hypothesis

Thank you

XXXXXXXXXX \mathbf{x} YYYYYYYYYY **XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX** YYYYYYYYYY \mathbf{x} **YXXYXXXXX** YXXXXXXXXX **XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX** YYYYYYYYYY **XXXXXXXXXX YXXYXXXXX**

 \mathbf{x} **XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX** YYYYYYYYY **XXXXXXXXXX XXXXXXXXXX** YXXYXXXXX YYYYYYYYY \mathbf{x} \mathbf{x} **YXXYXXXXX** YYYYXYYYY **XXXXXXXXXX XXXXXXXXXX YYYYYYYY** \mathbf{x} **YYYYYYYY** YYYYYYYYY