Effect of anti-CD20 antibody-mediated B-cell depletion on susceptibility to *Pneumocystis* infection in mice

Guixiang Dai¹, Gisbert Weckbecker², Jay K. Kolls¹

Poster Number: P0322

¹Center for Translational Research in Infection and Inflammation Tulane School of Medicine, Tulane School of Medicine, New Orleans, LA, USA;
²Novartis Pharma AG, Basel, Switzerland

Poster Presentation at the 8th Joint ACTRIMS-ECTRIMS Meeting, MS Virtual 2020, September 11–13, 2020
Disclosures

Guixiang Dai received research support from Novartis

Jay K. Kolls received personal compensation as a one time consultant from phPharma and research support from Novartis

Gisbert Weckbecker is an employee of Novartis

The study was funded by Novartis Pharma AG, Basel, Switzerland

Medical writing support was provided by Vimal Kumar Muthyala and Uma Kundu (employees of Novartis Healthcare Pvt. Ltd., Hyderabad, India). The final responsibility for the content lies with the authors
Background and objective

- *Pneumocystis* species are heterogeneous atypical microscopic fungi\(^1\)
- Immune response against *Pneumocystis* infection is thought to be mediated by B and T cells\(^1,2\)

Objective

To investigate the effect of subcutaneous (s.c.) anti-CD20 antibody-induced B-cell depletion on T-cell responses and antibody generation against primary and secondary *Pneumocystis* infection in mice

Methods

Experimental design

- **Group 1; Primary infection** (5 mice per group)
 - Female C57BL/6 mice
 - Day -3: Injection of anti-CD20 or isotype: 30 or 150 µg s.c.
 - Day 0: Mice infected with 2x10⁵ cyst of live *P. murina* by oropharyngeal administration
 - Day 14: Injection of anti-CD20 or isotype control
 - Day 28: Injection of anti-CD20 or isotype control

- **Group 2; Secondary infection** (4-5 mice per group)
 - Mice infected with 2x10⁵ cyst of live *P. murina* by oropharyngeal administration
 - Day -3, 4, 11, 18, 25: Injection of anti-CD20 or isotype control
 - Day 0: Mice infected with 2x10⁵ cyst of live *P. murina* by oropharyngeal administration
 - Day 14: Injection of anti-CD20 or isotype control
 - Day 28: Injection of anti-CD20 or isotype control

P. murina, Pneumocystis murina; s.c., subcutaneous
Methods
Assessments and statistics

Assessments

- Flow cytometry was used to assay T and B cells in the lung at Days 14 and 28 after infection
- Quantitative PCR was used to determine lung fungal burden
- Serum IgG, IgE, and IgM levels were measured by ELISA

Statistics

- Graphs were generated and statistical significances were analyzed using GraphPad Prism software
- P values of pairwise comparisons between groups of 2 were performed by a simple 2-tailed unpaired Student’s t test, while groups of 3 or more used 1-way ANOVA with Tukey’s multiple comparisons
Effect of anti-CD20 antibody treatment on B cells in lungs

Primary *Pneumocystis* infection

Anti-CD20 antibody treatment depleted both CD19+ and CD27+CD19+ cells, in the lung at Days 14 and 28

ISO, isotype control
Effect of anti-CD20 antibody treatment on T cells at Day 14
Primary *Pneumocystis* infection

No significant differences in the number of lung CD4+, IFNg+CD4+, IL-4+CD4+, IL-5+CD4+ and IL-17A+CD4+ cells between depleted and control mice after infection at Day 14

IFN, interferon; IL, interleukin; ISO, isotype control; n.s., non-significant
No significant differences in the number of lung CD4+, IFNγ+CD4+, IL-4+CD4+, IL-5+CD4+ and IL-17A+CD4+ cells between depleted and control mice after infection at Day 28.
Effect of anti-CD20 antibody treatment on IgG in sera
Primary *Pneumocystis* infection

Anti-CD20 antibody treatment did not alter antigen-specific serum immunoglobulin levels compared with control mice

IgG, immunoglobulin G; ISO, isotype control; n.s., non-significant; OD, optical density
Effect of anti-CD20 antibody treatment on lung fungal burden

Primary *Pneumocystis* infection

Day 14

![Graph showing fungal burden at day 14](image)

- Anti-CD20-30µg
- Anti-CD20-150µg
- ISO-30µg
- ISO-150µg

P = 0.004

Day 28

![Graph showing fungal burden at day 28](image)

- Anti-CD20-30µg
- Anti-CD20-150µg
- ISO-30µg
- ISO-150µg

P < 0.001

Although anti-CD20 antibody treatment impaired fungal clearance at Day 14 post-infection, fungal burden in the lungs was substantially reduced at Day 28 in both B-cell depleted and control mice.
Effect of anti-CD20 antibody treatment on B cells
Secondary *Pneumocystis* infection

- Anti-CD20 antibody treatment partially depleted CD19+ but not other measured cell subsets including CD27+CD19+

- No significant differences in the number of lung CD4+, IFNγ+CD4+, IL-4+CD4+, IL-5+CD4+ and IL-17A+CD4+ cells between depleted and control mice after secondary infection

- Anti-CD20 antibody treatment did not alter antigen-specific serum immunoglobulin levels compared with control mice 14 days after re-infection

- The lung fungal burden was comparable between depleted and control mice 14 days after re-infection

ISO, isotype control; n.s., non significant
Subcutaneous anti-CD20 antibody treatment may delay fungal clearance but it does not impair the ability of the host to clear *Pneumocystis* infection, irrespective of primary or secondary infection.

Thank you