Dual mode of action of siponimod in secondary progressive multiple sclerosis: A hypothesis based on the relevance of pharmacological properties

Marc Bigaud¹, Frank Dahlke¹, Thomas Hach¹, Daniela Piani Meier¹, Ralf Gold²

Poster Number: P0317

¹Novartis Pharma AG, Basel, Switzerland; ²Department of Neurology, St Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
Disclosures

Marc Bigaud, Thomas Hach, Frank Dahlke and Daniela Piani-Meier are employees of Novartis. The study was funded by Novartis Pharma AG, Basel, Switzerland. Medical writing support was provided by Arshjyoti Singh and Anuja Shah (employees of Novartis Healthcare Pvt. Ltd., Hyderabad, India). The final responsibility for the content lies with the authors.
Dual mode of action of siponimod
Selective for S1P$_1$ and S1P$_5$ receptors

As MS evolves, peripherally driven inflammation declines while central inflammation and neurodegeneration become more prominent1

Objective
To propose a working hypothesis of a dual MoA for siponimod in SPMS, based on latest preclinical and clinical observations, and explore differences to fingolimod MoA

Cellular targets
- Lymphocytes
- Astroglial cells
- Microglia
- Oligodendrocytes
- Neurones
- Atrial myocytes
- ECs, SMCs

Major actions
- Activation/Down-modulation
- Activation

Overall effects
- Anti-inflammatory (CNS & Periphery)
- Pro-repair (CNS)

- Reduced egress of pathogenic lymphocytes from LNs$^{2-8}$
- Reduced activation of neural cells
- Promoted oligodendrocyte maturation and survival
- Pro-myelination7-11

Major effects
- Oligodendrocytes
- Natural killer cells

Anti-inflammation
- As MS evolves, peripherally driven inflammation declines while central inflammation and neurodegeneration become more prominent1

CNS, central nervous system; COX, cyclooxygenase; ECs, endothelial cells; LNs, lymph nodes; MoA, mechanism of action; S1P, sphingosine 1-phosphate; SMCs, smooth muscle cells; SPMS, secondary progressive multiple sclerosis

Anti-inflammatory effects of siponimod

S1P₁-dependent inhibition of lymphocyte egress from lymph nodes

Periphery: Dose-dependent reduction of circulating lymphocyte counts (PD readout, as in humans)¹

Mouse

- Agonist-induced S1P₁ down-modulation on lymphocytes follows classical dose-related pharmacology (steady E_{max})
- Agonist-induced S1P₁ down-modulation also seen in astrocytes²

PD, pharmacodynamic; S1P, sphingosine 1-phosphate
² Ben Yacoub et al. Presented at ECTRIMS 2020, P0357
Pro-repair effects of siponimod

S1P₅-dependent pro-remyelination effects

- Pro-remyelination effects of siponimod and fingolimod are S1P₅-dependent^{1,2} and follow non-classical pharmacology (bell-shaped).
- Compatible with agonist-induced S1P₅ signaling³

CNS: Dose-dependent increase in remyelination following toxin-induced demyelination in vivo (mechanistic model in tadpoles^{1,2})

![Graph showing dose-dependent remyelination](image)

- Siponimod
- Fingolimod

Non-classical Pharmacological model

Bell-shaped dose-response curve = Receptor signaling with desensitization at supra-maximal doses

CNS, central nervous system; S1P, sphingosine 1-phosphate

Effects of siponimod in SPMS patients

MRI and clinical measures from the EXPAND trial

- In the EXPAND Ph III study in SPMS patients, siponimod significantly reduced the risk for confirmed disability progression and decline in cognitive processing speed\(^2\).
- Also observed were positive effects in reducing gray matter atrophy and MTR changes in normal appearing brain tissue, cortical gray matter and normal appearing white matter\(^1\).
- Beneficial effects on MTR are compatible with preclinical observations on pro-remyelination effects\(^1\).

Effect of siponimod on changes in median nMTR in NABT, cGM and NAWM in overall SPMS population (PPS)\(^1\)

Time to 6 month confirmed progression on the EDSS versus placebo\(^2\)

Time to 6 month confirmed worsening on the SDMT versus placebo\(^2\)

cGM, cortical gray matter; CNS, central nervous system; EDSS, Expanded Disability Status Scale; MTR, magnetization transfer ratio; nMTR, normalized magnetization transfer ratio; NABT, normal appearing brain tissue; NAWM, normal appearing white matter; SDMT, Symbol Digit Modalities Test; SPMS, secondary progressive multiple sclerosis.
Working hypothesis about the dual MoA of siponimod

Concomitant efficacy of siponimod in blood and CNS compartments

<table>
<thead>
<tr>
<th></th>
<th>S1P₁-dependent anti-inflammatory effects</th>
<th>S1P₅-dependent Pro-remyelination effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunomodulatory/anti-inflammatory Blood - S1P₁ functional antagonism</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Dose-dependent signaling and down-modulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro-remyelination CNS effects CNS - S1P₅ agonism</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Dose-dependent signaling with desensitization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siponimod CNS/blood ratio: ~ 4–6</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Fingolimod CNS/blood ratio: >20</td>
<td>+++</td>
<td>+</td>
</tr>
</tbody>
</table>

- **Dual MoA requires optimal (+++)** exposure in both CNS and blood compartments to achieve efficacy through:
 - S1P₁-dependent anti-inflammatory effects on blood lymphocytes
 - S1P₅-dependent pro-repair effects
- **Any treatments achieving adequate drug exposure in blood but too low/high drug exposure in CNS would show good anti-inflammatory efficacy but no or reduced pro-repair effects in the CNS**
- **CNS/blood drug exposure ratio seen as key for expression of dual MoA**

CNS, central nervous system; MoA, mechanism of action; S1P, sphingosine 1-phosphate
CNS/blood Drug Exposure Ratios (DER)

Sipimod versus fingolimod

- Sipimod shows similar CNS penetration in naïve and EAE mice (CNS/blood ratio: ~ 4–6)
- Fingolimod demonstrates CNS uptake similar to sipimod in naïve mice but 3–4 fold higher CNS penetration in EAE mice (CNS/blood ratio: >20)

* *p<0.05. CNS, central nervous system; DER, drug exposure ratio; EAE, experimental autoimmune encephalomyelitis; fingolimod-P, fingolimod-phosphate; PK, pharmacokinetic, S1P, sphingosine 1-phosphate
Conclusions

Understanding MoA helps in differentiating siponimod from fingolimod

- Preclinical findings show that siponimod may have the specific target selectivity (S1P_{1,5}) and CNS/blood drug exposure ratio for a favorable expression of its dual MoA (peripheral/central anti-inflammatory and central pro-repair)

- PET/MRI studies in SPMS patients versus controls including PK/PD readouts would further contribute to corroborate this hypothesis

Thank you

CNS, central nervous system; MoA, mechanism of action; MRI, magnetic resonance imaging; PD, pharmacodynamic; PET, positron emission tomography; PK, pharmacokinetic; S1P, sphingosine-1 phosphate; SPMS, secondary progressive multiple sclerosis