P249 A Novel Signature of Lipoxin A₄ and Prostaglandin E₂ in Plasma Associated With Disease Severity in Patients With Relapsing-Remitting and Secondary **Progressive Multiple Sclerosis**

Jelle Y. Broos^{1,2}, Harald Kropshofer^{†,3}, Goeril Karlsson³, Jeff Maca⁴, Helga E. de Vries¹, Martin Giera², Gijs Kooij¹

Amsterdam UMC, location VUmc, MS center Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands, ²Leiden University Medical Center, Center for Proteomics & Metabolomics, Leiden, Netherlands, ³Novartis Pharma AG, Basel, Switzerland, ⁴Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States

Introduction

- Multiple Sclerosis (MS) is a demyelinating and neuro-inflammatory disease characterised by an initially relapsing course (relapsing-remitting multiple sclerosis; RRMS) which later progresses to a chronic progressive form of MS (secondary progressive multiple sclerosis; SPMS)
- The factors which mediate the progression from RRMS to SPMS are of key interest in terms of both treatment strategy and innovation, and biomarker identification
- Chronic neuroinflammation may be due to dysregulation of resolution of inflammation. The chronic inflammatory phase sees the presence of pro-inflammatory immune cells and widespread glial activation within the central nervous system^{1,2}
- Specialized pro-resolving lipid mediators play an important role in the resolution of chronic inflammation¹
- There is an emerging hypothesis that failed resolution might be caused by a lack of pro-resolving lipid mediators, such as lipoxin A_4 (LXA₄), while pro-inflammatory lipids, such as prostaglandins (PG) like prostaglandin E₂ (PGE₂) may exacerbate or prolong inflammation^{1,3}

Objective

 To explore whether pro-resolving lipids mediators (including LXA₄) and pro-inflammatory lipids (including PGE₂) can be used as candidate of disease activity in patients with SPMS

Methods

- In this post hoc analysis, baseline (BL) samples from the Phase 3 (EXPAND; N=55 randomly selected patients with SPMS) and the Phase 4 (LONGTERMS; N=28 who converted from RRMS to SPMS) studies were included
- Lipids levels were quantified in plasma samples using high performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) for lipidomics
- Both lipid mediators were categorised as LXA₄ (low)+PGE₂ (high), LXA₄ (low)+PGE₂ (low), LXA₄ (high)+PGE₂ (high), or LXA₄ (high)+PGE₂ (low); [Low=0 pg/mL; High>0 pg/mL]
- Baseline (BL) characteristics, including disease duration since first symptom (DD), Expanded Disability Status Scale (EDSS), normalised brain volume (NBV), T2 lesion volume (LV), 9-Hole Peg Test (9-HPT), Paced Auditory Serial Addition Test (PASAT) and serum neurofilament light chain (sNfL), were summarized by lipid category or lipid signature

- In contrast, SPMS patients with LXA₄ (high) versus LXA₄ (low) showed higher NBV (1439 vs • 1414 cm³), lower LV (16.4 vs 18.1 cm³), similar EDSS (5.6 vs 5.5) and a better performance in the 9-HPT (31.6 vs 35.2 seconds) and PASAT score (42.0 vs 38.8), respectively
- SPMS patients with the signature LXA_4 (low)+PGE₂ (high) showed advanced disease severity compared to patients with LXA₄ (high)+PGE₂ (low), based on EDSS (5.8 vs 5.6), NBV (1383 vs 1438 cm³), LV (21.0 vs 16.7 cm³), sNfL (63.5 vs 62.5 pg/mL) and 9-HPT (43.3 vs 31.3 seconds) and PASAT score (37.2 vs 48.0) (Table 1)

LONGTERMS patient population

- In RRMS converted SPMS patients, plasma samples were PGE₂ (high) and LXA₄ (high) in 14/28 and 4/28 of the patients, respectively (Table 2)
- The signature LXA₄ (low)+PGE₂ (high) showed similar results as of SPMS towards association ٠ with higher EDSS, advanced brain atrophy and low performance in the 9-HPT and PASAT

Table 2. LONGTERMS: Lipid Biosignatures

	LXA ₄		PGE ₂		LXA ₄ +PGE ₂			
Baseline Characteristics					LXA ₄ (low)+PGE ₂ (low)			
	0 pg/mL	>0 pg/mL	0 pg/mL	>0 pg/mL	LXA ₄ (low)+ PGE ₂ (high)	or LXA₄ (high)+ PGE₂ (high)	LXA₄ (high)+ PGE₂ (low)	
	N=24	N=4	N=14	N=14	N=10	N=18	N=0	
Years since first MS symptom (mean)	9.1	4.5	7.6	9.3	11.2	6.9	-	
EDSS (mean)	3.7	4.1	3.4	4.1	4.1	3.6	-	
NBV (mean; cm ³)	1505	1541	1522	1500	1482	1526	-	
T2 Lesion Volume (mean; mm³)	7814	5696	6138	8885	10160	6040	-	
sNfL (mean; pg/mL)	39.2	38.8	34.0	44.2	46.4	35.1	-	
9-HPT (sec)	26.6	29.7	47.9	45.8	31.8	24.4	-	
PASAT score	46.1	51.3	22.8	31.2	43.6	48.7	-	

9HPT, 9-Hole Peg Test; EDSS, Expanded Disability Status Scale; LXA₄, lipoxin A₄; MS, multiple sclerosis; NBV, normalised brain volume; PASAT, Paced Auditory Serial Addition Test; PGE₂, prostaglandin E₂; sNfL, serum neurofilament light chain

Conclusions

- A total of 14/28 (50%) patients who later progressed to SPMS had high PGE₂ while the pro-resolving lipid LXA₄ was high in 4/28 patients
- Due to the limited sample size and exploratory nature of this analysis, only summary statistics were provided

Results

EXPAND patient population

- In SPMS, plasma samples were PGE_2 (high) and LXA_4 (high) in 13/55 and 6/55 of the patients, respectively
- SPMS patients with PGE_2 (high) versus PGE_2 (low) showed longer disease duration (20.6 vs 17.6 years), higher EDSS (5.7 vs 5.5), lower NBV (1384 vs 1425 cm³), higher LV (20.5 vs 17.1 cm³), higher sNfL (58.0 vs 47.9 pg/mL) and weaker performance in the 9-HPT (42.5 vs 32.4 seconds) and PASAT score (35.6 vs 40.2)

Table 1. EXPAND: Lipid Biosignatures

	LXA ₄		PGE ₂		LXA ₄ +PGE ₂			
Baseline Characteristics	0 pg/mL	>0 pg/mL	0 pg/mL	>0 pg/mL	l LXA₄ (low)+ PGE₂ (high)	_XA₄ (low)+PGE₂ (low) or LXA₄ (high)+PGE₂ (high)) (high)+ PGE₂ (low)	
	N=49	N=6	N=42	N=13	N=12	N=38	N=5	
Years since first MS symptom (mean)	18.0	18.0	17.6	20.6	20.7	17.7	17.7	
EDSS (mean)	5.5	5.6	5.5	5.7	5.8	5.5	5.6	
NBV (mean; cm ³)	1414	1439	1425	1384	1383	1423	1438	
T2 Lesion Volume (mean; mm³)	18129	16430	17140	20539	20986	17149	16681	
sNfL (mean; pg/mL)	64.4	63.1	47.9	58.0	63.5	64.7	62.5	
GFAP (median; pg/ mL)	162.1	179.7	126.7	138.8	-	-	-	
9-HPT (sec)	35.2	31.6	32.4	42.5	43.3	32.6	31.3	
PASAT score	38.8	42.0	40.2	35.6	37.2	38.8	48.0	

9HPT, 9-Hole Peg Test; EDSS, Expanded Disability Status Scale; GFAP, glial fibrillary acidic protein; LXA₄, lipoxin A₄; MS, multiple sclerosis; NBV, normalised brain volume; PASAT, Paced Auditory Serial Addition Test; PGE₂, prostaglandin E₂; sNfL, serum neurofilament light chain

- SPMS patients with PGE₂ (high) at baseline, had longer disease duration, higher EDSS, lower brain volume, higher T2 lesion volume and weaker performance in 9-HPT and PASAT than patients without detectable prostaglandins
- SPMS patients with the signature LXA₄ (low)+PGE₂ (high) shared an advanced disease phenotype compared to LXA₄ (high)+PGE₂ (low), based on MRI activity, EDSS and 9-HPT
- SPMS patients with vs without pro-resolving lipid LXA₄ showed higher brain volume, lower T2 lesion volume and a better performance in 9-HPT and PASAT
- The initial findings from the study are promising and further longitudinal analyses are in progress to better understand how these lipid signatures are related to disease progression and the switch from RRMS to SPMS

References

- 1. Troletti D, et al. Cell Reports; June 2021
- 2. Kawahara K, et al. Biochimica et Biophysica Acta. 2015;1851:414-421
- 3. Kooij G, et al. C Haematologica 2020;105:2056-2070

Acknowledgments

The authors acknowledge the following Novartis employees: Neha Kulkarni and Rohit Bhandari for medical writing assistance and coordinating author reviews, and **Saketh Vellanki** for creative design assistance. The final responsibility for the content lies with the authors.

Disclosures

Jelle Y. Broos, Helga de Vries and Martin Giera have nothing to disclose. Gijs Kooij is partly supported by a grant from Novartis. Jeff Maca and Goeril Karlsson are employees of Novartis. Harald Kropshofer[†] was an employee of Novartis at the time of abstract submission, but sadly passed away in May 2022, the authors wish to acknowledge his significant contribution to this work via this posthumous authorship

This study was funded by Novartis Pharma AG, Switzerland.

Copyright © 2022 Novartis Pharma AG. All rights reserved.

Poster presented at the 38th Congress of the European Committee for Treatment and Research in Multiple Sclerosis, 26–28 October 2022.

Visit the web at: https://bit.ly/ectrims2022

Copies of this poster obtained through QR (Quick Response) code are for personal use only and may not be reproduced without written permission of the authors

Presenter email address: j.y.broos@amsterdamumc.nl

