Remibrutinib, a Novel Bruton's Tyrosine Kinase Inhibitor, Exhibits Improved Target Selectivity and Potency *In Vitro*

Robert Pulz, Daniela Angst, Denis Eichlisberger, Bruno Cenni

Novartis Institutes for Biomedical Research, Basel, Switzerland

Introduction

- Bruton's tyrosine kinase (BTK), a cytoplasmic tyrosine kinase and a member of the TEC kinase family, is a key signaling node in B cell receptor and Fc receptor signaling^{1,2}
- Inhibition of BTK offers an attractive mechanism to reduce chronic autoimmunity and neuroinflammation via inhibition of B cells and myeloid cells with an oral drug^{1,2}
- Remibrutinib (LOU064) is a potent, highly selective covalent BTK inhibitor (BTKi) with a promising preclinical and clinical profile for the treatment of multiple sclerosis (MS)³⁻⁵
- Covalent enzyme inhibitors show time-dependent *in vitro* target binding; hence experimental data are influenced by assay conditions and comparisons should be run under identical experimental conditions³
- The efficacy of remibrutinib in experimental autoimmune encephalomyelitis (EAE) mouse models for MS is being presented at ECTRIMS 2022 (P134)

Objective

• To compare the potency and selectivity of covalent and reversible BTKis *in vitro* under comparable relevant experimental conditions

Methods

- In human blood, *in vitro* binding of covalent inhibitors to BTK was assessed over time and concentration using immunoassays detecting free and compound-bound BTK protein³
- The *in vitro* inhibition of human B cells and basophils was assessed in human blood for covalent and reversible BTKis.³ The durability of B cell inhibition was compared between the covalent BTKi remibrutinib and the reversible BTKi fenebrutinib after drug washout *in vitro* with human peripheral blood mononuclear cells (PBMC)
- Selectivity across more than 456 human kinases was determined for all BTKis at 1 µM in a KINOMEscan® screen to allow for direct comparison of covalent and reversible BTKis.³ For a panel of selected kinases, dissociation constants (Kd) were determined³

Results

BTK occupancy of covalent BTKis in human blood in vitro

In human blood, covalent inhibitors showed time- and concentration-dependent BTK binding *in vitro* (Figure 1; data from two independent donors and experiments). The 50% inhibitory concentration (IC₅₀) at 1 hour was 21 nM for remibrutinib, 508 nM for evobrutinib, 165 nM for tolebrutinib and 427 nM for orelabrutinib

Figure 1. Occupancy of covalent BTKis in human blood

Figure 3. Durability of in vitro B cell inhibition after drug washout

BTKi kinase selectivity

- Remibrutinib showed competition of probe binding to the lowest number of non-BTK kinases at 1 µM followed by fenebrutinib, evobrutinib, orelabrutinib, and tolebrutinib (Figure 4)
- A quantitative assessment of binding constants to a subset of kinases confirmed the very high potency and selectivity of remibrutinib, followed by fenebrutinib, tolebrutinib, orelabrutinib and evobrutinib (Table 2)

Figure 4. Kinase selectivity screen*

*KINOMEscan® screen: Dot size indicates extent of kinase binding (percent remaining probe binding vs control). The small green dots indicate inhibition below assay-relevant 35% threshold. Image generated using TREEspot ™. Software Tool and reprinted with permission from KINOMEscan®, a division of DiscoveRx Corporation.

Table 2. Binding affinity to selected kinases

K _d (nM), Fold selectivity*	втк	TEC	BMX	ІТК	EGFR	ERBB2	ERBB4	JAK3
Remibrutinib	0.63	110	540	>10000	>10000	>10000	>10000	>10000
enebrutinib 0.96	0.96	390	210	<u>>15873x</u> 410	>10000	>10000	>10000	>10000
Tolebrutinib	0.00	406x 800	219x 3.8	427x 880	<u>>10417x</u> 20	<u>>10417x</u> 2.4	<u>>10417x</u> 5.1	<u>>10417x</u> 980
	3.4	235x	1.1x	259x	5.9x	0.7x	1.5x	288x
Orelabrutinib	5.1	35 6.9x	450 88x	>10000 >1961x	2600 510x	7600 1490x	3000 588x	>10000 >1961x
Evobrutinib	16	4.5 0.3x	31 1.9x	3700 231x	7100 443x	>10000 625x	5600 350x	>10000 625x

EP0896

 Remibrutinib showed a very rapid and complete covalent binding to BTK at concentrations as low as 300 nM, which is well within the range of blood levels reached in humans⁴ (Figure 2)

Figure 2. BTK occupancy comparison at 300 nM

In vitro inhibition of human blood B cells and basophils

- To correlate BTK binding and pathway inhibition, as well as to allow comparison with the reversible BTKi fenebrutinib, we assessed the inhibition of B cell and basophil activation in human blood *in vitro* after a 1-hour compound pre-incubation using CD69 and CD63 as activation markers in the respective cell type
- Human blood IC₅₀ values for B cell inhibition were consistent with BTK occupancy values at the1-hour timepoint with a similar pattern for basophil inhibition, suggesting that remibrutinib and fenebrutinib show more potent *in vitro* BTK pathway inhibition in human blood (Table 1)

Table 1. B cell and basophil inhibition in vitro

Blood B cell CD69 IC ₅₀ , nM									
	Remibrutinib (n=6)	Fenebrutinib (n=8)	Evobrutinib (n=8)	Tolebrutinib (n=2)	Orelabrutinib (n=2)				
Average (SD)	18 (5)	15 (15)	320 (74)	74 (30)	185 (21)				
Blood basophil CD6	63 IC ₅₀ , nM								
	Remibrutinib (n=6)	Fenebrutinib (n=2)	Evobrutinib (n=4)	Tolebrutinib (n=2)	Orelabrutinib (n=2)				
Average (SD)	67 (54)	22 (2)	1182 (819)	228 (58)	537 (20)				

Effect of washout on B cell inhibition

 In vitro B cell inhibition by remibrutinib was not sensitive to drug washout; this was in contrast to the reversible BTKi fenebrutinib, which showed an approximate ten-fold loss of inhibition after brief washing of PBMC (Figure 3) *The higher the value, the better the selectivity between BTK affinity and off-target affinity. Binding affinities are based on KINOMEScan® Kd determinations, Eurofins/DiscoverX.

Conclusions

- *In vitro* target binding of covalent BTKis in human blood was time- and concentrationdependent. Remibrutinib showed the fastest and complete binding to BTK at low concentrations compared to other BTKis
- BTK binding in blood correlated well with the inhibition of BTK-dependent pathways under comparable *in vitro* conditions; as the potency for B cell and basophil inhibition showed a similar compound ranking with remibrutinib and fenebrutinib being more potent than the other BTKis
- Kinome-wide screening, as well as dedicated off-target binding quantifications showed that remibrutinib is highly selective than fenebrutinib, evobrutinib, orelabrutinib, and tolebrutinib
- Remibrutinib showed a highly favorable *in vitro* selectivity and potency profile which could translate to a best-in-class clinical profile for patients with MS

References

- 1. Steinmaurer A et al. *Curr Pharm Des.* 2021;27:1-8.
- 2. Bierhansl L et al. *Nat Rev Drug Discov.* 2022;21:578–600.
- 3. Angst D et al. J Med Chem. 2020;63:5102-5118.
- 4. Kaul M et al. *Clin Transl Sci.* 2021;14:1756–1768.
- 5. Maurer M et al. J Allergy Clin Immunol. 2022;S0091-6749(22)01181-2.

Acknowledgements

The authors acknowledge the following Novartis employees: **Bhavesh Kshirsagar** and **Sreelatha Komatireddy** for medical writing assistance and coordinating author reviews. The final responsibility for the content lies with the authors.

Disclosures

This study was sponsored by Novartis Pharma AG, Switzerland. **Robert Pulz, Daniela Angst, Denis Eichlisberger and Bruno Cenni** are employees of Novartis.

Copyright © 2022 Novartis Pharma AG. All rights reserved.

Poster presented at the 38th congress of the European Committee for Treatment and Research in Multiple Sclerosis, RAI Amsterdam, Amsterdam, Netherlands, 26th - 28th October 2022.

Visit the web at:

https://bit.ly/ectrims2022

Copies of this poster obtained through Quick Response (QR) code are for personal use only and may not be reproduced without written permission of the authors Presenter email address: <u>bruno.cenni@novartis.com</u>

