Impact of Ofatumumab on Immune Responses Post-vaccination in RMS Patients: ALITHIOS Vaccination Sub-study Design

Elżbieta Jasińska,¹ Mario Habek,² Daniel Wynn,³ Sinead Dunphy,⁴ Linda Mancione,⁵ Nicola Rennie,⁶ Wendy Su,⁵ Ronald Zielman,⁷ Silvia Delgado⁸

Oral presentation: OPR-207

¥¥↓¥¥↓¥¥↓ ↓¥¥↓¥¥↓¥↓ ¥¥↓¥¥↓¥↓

YYXYYXYYY

\YY\YY\Y\ YY\YY\YY\ \YY\YY\YY\ YY\YY\YYY

YYYYYYYY

 ¹Collegium Medicum UJK, and Clinical Center, RESMEDICA, Kielce, Poland; ²University Hospital Center, Zagreb, Croatia; ³Consultants in Neurology, Ltd, Northbrook, IL, USA; ⁴Novartis Ireland Limited, Dublin, Ireland; ⁵Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA; ⁶Novartis Pharma AG, Basel, Switzerland; ⁷Novartis Pharma B.V., Amsterdam, Netherlands; ⁸University of Miami Miller School of Medicine, Miami, FL, USA

Oral Presentation at the 7th Congress of the European Academy of Neurology, June 19-22, 2021

Scan to download a copy of this presentation

Disclosures

Elzbieta Jasinska received personal compensation for advisory boards from Biogen and speaker fees from Biogen, Novartis, Roche and Sanofi.

Mario Habek participated as a clinical investigator and/or received consultation and/or speaker fees from Biogen, Sanofi Genzyme, Merck, Bayer, Novartis, Pliva/Teva, Roche, Alvogen, Actelion, Alexion Pharmaceuticals, TG Pharmaceuticals.

Daniel Wynn received speaking and/or consulting fees from Acorda Therapeutics, Avanir Pharmaceuticals, Banner Life, Bristol Myers Squibb, Biogen, EMD Serono, Mallinckrodt Pharmaceuticals, Mylan, Roche/Genentech, Sanofi Genzyme, and Teva. He has received research support from Acorda Therapeutics, Adamas Pharma, Avanir Pharmaceuticals, Chugai Pharma, EMD Serono, Eisai, Mallinckrodt Pharmaceuticals, Novartis, Osmotica, Receptos/Celgene, SanBio, Sunovion, Sanofi Genzyme, Teva, TG Therapeutics, and the National Multiple Sclerosis Society.

Silvia Delgado received consultant fees from Novartis and research grant funding (clinical trials) from Novartis, MAPI Pharma, EMD Serono, NIH/NINDS and NMSS.

Sinead Dunphy, Linda Mancione, Nicola Rennie, Wendy Su, and Ronald Zielman are employees of Novartis.

Medical writing support was provided by **Gillipsie Minhas** and **Anuja Shah** (employees of Novartis Healthcare Pvt. Ltd., Hyderabad, India). The final responsibility for the content lies with the authors.

This study is funded by Novartis Pharma AG, Basel, Switzerland.

Background ALITHIOS study

- Ofatumumab, a fully human anti-CD20 monoclonal antibody, targets select B-cell subsets, allowing B-cell reconstitution and preserving pre-existing humoral immunity¹
- Immunoglobulins (Ig) play an important role in adaptive/humoral immunity²
- Reduced serum IgG and/or IgM levels are known to occur with other anti-CD20 therapies in MS patients, resulting in an increased risk of infection³⁻⁵
- In the ASCLEPIOS phase 3 trials, no association was observed between decreased Ig levels and the risk of serious infections in ofatumumab-treated patients for up to 96 weeks⁶
- ALITHIOS (NCT03650114), an open-label, single-arm umbrella extension phase 3b trial was designed to assess the benefit-risk profile of ofatumumab (20 mg SC every 4 weeks) and its tolerability for up to 5 years in RMS patients⁷
 - The study enrolled 1703 RMS patients from the APLIOS, APOLITOS and ASCLEPIOS I/II trials who continued ofatumumab treatment
- A recent long-term safety analysis from ALITHIOS has evaluated IgM/IgG levels and their association with infection, for up to 3.5 years⁸

Ig, immunoglobulin; MS, multiple sclerosis; RMS, relapsing multiple sclerosis; SC, subcutaneous.

^{1.} Dubey D, et al. Neurol Neuroinflamm. 2017;4(6) e405. 2. Furst DE. Semin Arthritis Rheum. 2009;39:18-29. 3. Kim S-H, et al. JAMA Neurol. 2013;70:1110-1117. 4. Tallantyre EC, et al. J Neurol. 2018;265:1115-1122. 5. Derfuss T, et al. Mult Scler. 2019;25(S2):3-130 (Presented at ECTRIMS 2019: OP65). 6. Wiendl H, et al. Presented at: the MSVirtual. 2020; P0236. 7. https://clinicaltrials.gov/ct2/show/NCT03650114 (accessed June 10, 2021). 8. Novartis data on file.

Background ALITHIOS: IgG/IgM levels in ofatumumab-treated RMS patients up to 3.5 years

- The mean serum **IgG remained stable for up to 3.5 years** of ofatumumab treatment (*Figure 1*)
 - IgG levels remained similar to the baseline values in all quartiles^b with low discontinuations (0.3%)
- The mean serum IgM declined over time but remained above LLN for up to 3.5 years (Figure 2)

Ig, immunoglobulin; LLN, lower limit of normal; SE, standard error; RMS, relapsing multiple sclerosis; TER/OMB, switched from teriflunomide to ofatumumab.

Long-term OMB, N=1292; TER/OMB, N=677. For all pooled analyses, a fixed value of LLN (using ALITHIOS study reference) was used: IgG: 5.65 g/L/IgM: 0.4 g/L. R1: The first patient with first treatment emergent assessment in OMB period after switching to OMB (72 weeks); R2: The last patient with last treatment emergent assessment in TER period before switching to OMB (120 weeks). ^aSwitching period refers to the patients started with teriflunomide and not applicable to the patients with ofatumumab in core period; For TER/OMB group, data from the first dose of TER till last dose of OMB plus 100 days/analysis cutoff date have been used. ^bQuartiles for IgG (g/L) Q1: 8.57, Q2: 10.07 and Q3: 11.51. Novartis data on file.

Background

ALITHIOS: Association between IgM/IgG decrease and serious infections in ofatumumab-treated RMS patients up to 3.5 years

Patients with at least one serious infection within 1 month prior and until 1 month after any series of drops in IgM/IgG <LLN

	IgM				lgG				Overall	
	<lln (N=454ª)</lln 		≥LLN (N=1512⁵)		<lln (N=30ª)</lln 		≥LLN (N=1936 ^b)		N=1969	
	n (%)	IRc	n (%)	IR℃	n (%)	IRc	n (%)	IR℃	n (%)	IR℃
Patients with ≥1 serious infection	3 (0.7)	0.80	44 (2.9)	1.38	1 (3.3)	7.02	55 (2.8)	1.34	58 (2.9)	1.39
Herpes zoster (PT)	1 (0.2)	0.27	0	0	0	0	1 (0.1)	0.02	1 (0.1)	0.02
URTI (PT)	1 (0.2)	0.27	0	0	0	0	1 (0.1)	0.02	1 (0.1)	0.02
UTI (PT)	1 (0.2)	0.27	3 (0.2)	0.09	0	0	6 (0.3)	0.14	6 (0.3)	0.14
Escherichia UTI (PT)	0	0	1 (0.1)	0.03	NA	NA	NA	NA	1 (0.1)	0.02
Kidney infection (PT)	0	0	1 (0.1)	0.03	NA	NA	NA	NA	1 (0.1)	0.02
Pneumonia (PT)	0	0	8 (0.5)	0.25	1 (3.3)	7.02	8 (0.4)	0.19	9 (0.5)	0.21

• The overall incidence of serious infections in ofatumumab-treated patients was low (1.39 IR per 100 patient-years) for up to 3.5 years

• There was no association between decreased IgG/IgM levels and risk of serious infections

Ig, immunoglobulin; IR, incidence rate; LLN, lower limit of normal; PT, preferred term; PY, patient-year.

^aNumber of patients with lgM/lgG <LLN at least once at any time during the post-baseline visits. ^bNumber of patients with no occurrence of IgM/lgG <LLN at least once at any time during the post-baseline visits. ^bNumber of patients with no occurrence of IgM/lgG <LLN at least once at any time during the post-baseline visit. ^cIR per 100 PY estimated via a Poisson regression model with only treatment as the factor and with the log-link and natural logarithm of time as the offset variable. For all pooled analyses, a fixed value of LLN (using ALITHIOS study reference) was used: IgM: 0.4 g/L; and IgG: 5.65 g/L.

Novartis data on file.

Background ALITHIOS vaccination sub-study

- Considering the role of B cells in immune response, it is important to assess protective immune responses against clinically relevant vaccines in ofatumumab-treated patients
- To date, there are limited data on humoral response post vaccination in patients treated with ofatumumab

The open-label umbrella extension ALITHIOS vaccination sub-study (*NCT03650114*) will **investigate the effect of B-cell depletion by ofatumumab** on the elicitation of **acquired humoral immune responses post-vaccination** with the selected vaccines and KLH neo-antigen in patients with RMS

Objective

To present the design of ALITHIOS vaccination sub-study in patients with RMS treated with of atumumab

ALITHIOS vaccination sub-study: Design

 This is a single-arm, vaccination sub-study embedded in the phase 3b ALITHIOS study. The vaccinations are administered in 2 series

13-PCV, 13-valent pneumococcal conjugate vaccine; 23-PPV, 23-valent pneumococcal polysaccharide vaccine; KLH, keyhole limpet hemocyanin; RMS, relapsing multiple sclerosis; SC, subcutaneous; TT, tetanus toxoid; W, week. ^aSubjects must receive continuous open-label ofatumumab treatment for a minimum of 12 weeks immediately preceding the first vaccination visit in each series. ^bMinimum interval of 8 weeks between 13-PCV and 23-PPV vaccinations. ^cVaccination series 2 for influenza must be coordinated to occur within the estimated start/end dates for the 2020-2021/2021-2022 influenza season for the study site where the subject is enrolled.

ALITHIOS vaccination sub-study: Patient population

Key inclusion criteria

- Received at **least 12 weeks of continuous open-label ofatumumab**^a treatment immediately before study enrolment
- Received at least one previous immunisation against
 - Tetanus toxoid (TT)
 - Tetanus and diphtheria (DT/Td)
 - Tetanus, diphtheria, and acellular pertussis (DTaP/Tdap)
 - Tetanus, diphtheria, acellular pertussis, inactivated polio vaccine (Tdap-IPV), or
 - Other TT-containing vaccines

Key exclusion criteria

- Known hypersensitivity to any component of any of the vaccines in the vaccination sub-study
- Low IgG/IgM levels requiring an ofatumumab treatment interruption within the 12 weeks immediately before enrolment
- Any major episode of infection requiring hospitalisation or treatment with intravenous antibiotics within 4 weeks or oral antibiotics within 2 weeks before the first vaccination visit
- Before enrolment, history of immunisation with
 - any TT-containing vaccine within 2 years
 - any 13-PCV or 23-PPV within 5 years
 - 2020-2021 or 2021-2022 seasonal influenza vaccine
 - other non-live vaccines within 4 weeks
- History of previous exposure to KLH
- Known clinical diagnosis of influenza infection during the 2020-2021 (or 2021-2022) influenza season before enrolment

13-PCV, 13-valent pneumococcal conjugate vaccine; 23-PPV, 23-valent pneumococcal polysaccharide vaccine; lg, immunoglobulin; KLH, keyhole limpet hemocyanin. ^aOfatumumab treatment not interrupted during the 12 weeks immediately prior to sub-study.

200

ALITHIOS vaccination sub-study: Objectives

Primary objective

• To characterise the humoral immune response^a to the TT vaccine (8 weeks after immunisation)

Secondary objectives

- To characterise the humoral immune response^a to the:
 - TT vaccine (4 weeks after immunisation)
 - 13-PCV (4 and 8 weeks after immunisation)
 - o 13-PCV including booster at 8 weeks later by 23-PPV (4 and 8 weeks after immunisation)
 - KLH neo-antigen (4, 8 and 12 weeks after administration)
 - o 2020-2021/2021-2022 seasonal quadrivalent influenza vaccine (4 weeks after immunisation)
- Impact of ofatumumab exposure on immune response^a to TT and influenza vaccination

^aHumoral immune response in patients with RMS is assessed by measuring antibody titres to vaccine antigens.

ALITHIOS vaccination sub-study: Sample size and statistical analysis

Sample size determination

- Approximately 145 patients with RMS will be enrolled in the study
- Allowing for a 16% drop out rate, this will ensure at least 120 patients with available data for pre-immunisation tetanus antibody titres and post-immunisation tetanus antibody titres at 8 weeks after administration

Statistical analysis

- The primary analysis will estimate the proportion of responders to the TT vaccine with a 95% CI based on a binominal distribution
- Efficacy analysis: The geometric mean level of pre- and post-vaccination antibody titre levels will be reported. Efficacy analysis will be performed in the FAS
- Safety analysis: Recording of adverse events and vital signs will be performed in the safety analysis set, defined as patients who receive at least one dose of ofatumumab

Conclusions

- Long-term findings of ofatumumab treatment over ~3.5 years were consistent with the 96-week phase 3 ASCLEPIOS trial data,¹ which showed that
 - the mean IgG levels remain similar to baseline values and mean IgM levels remain above the LLN throughout the study time period²
 - the overall incidence of infections was low, and no association was observed between decreased Ig levels and the risk of serious infections²
- FPFV for the vaccination sub-study was in September 2020, and the first interim results are expected in Q2 of 2022
- The vaccination sub-study will provide a better understanding of the effect of B-cell depletion by of atumumab on immune responses post vaccination
- The results of the vaccination sub-study will help to guide physicians treating RMS patients with of atumumab, with respect to primary and secondary immunisations

FPFV, first patient first visit; Ig, immunoglobulin; LLN, lower limit of normal; RMS, relapsing multiple sclerosis. 1. Wiendl H. et al. Presented at the *MSVirtual*, 2020; P0236, 2. Novartis data on file. Thank you

 \mathbf{x} \mathbf{x} \mathbf{x} YYYYYYYYY \mathbf{x} \mathbf{x}

 \mathbf{x} YXXXXXXXXX \mathbf{x} **XXXXXXXXXX** \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} **XXXXXXXXXX**