Effect of Subcutaneous Ofatumumab on Lymphocyte Subsets in Patients with RMS: Analysis from the APLIOS Study

Heinz Wiendl¹, Edward Fox², Alexandra Goodyear³, Inga Ludwig⁴, Morten Bagger⁴ Harald Kropshofer⁴, Martin Merschhemke⁴, Gisbert Weckbecker⁴, Amit Bar-Or⁵

¹University of Muenster, Muenster, Germany; ²Central Texas Neurology Consultants and Dell Medical School, The University of Texas at Austin, Round Rock, Austin, TX, USA; ³Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA; ⁴Novartis Pharma AG, Basel, Switzerland; ⁵Center for Neuroinflammation and Experimental Therapeutics and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

INTRODUCTION

Ofatumumab, the first fully human anti-CD20 monoclonal antibody, binds to two distinct non-continuous regions of CD20, resulting in potent B-cell depletion and reduced B- and T-cell interactions. Ofatumumab demonstrated superior efficacy versus teriflunomide in the Phase 3 ASCLEPIOS I/II trials in RMS; its effect on B- and T-cell subsets warrants further investigation.

We evaluated the effect of ofatumumab 20 mg subcutaneous (s.c.) dosing regimen on B- and T-cell subsets in relapsing multiple sclerosis (RMS) patients.

METHODS

APLIOS was a 12-week, open-label, Phase 2 bioequivalence study. Patients received ofatumumab 20 mg (0.4 mL) s.c. loading doses on Days 1, 7, and 14, and maintenance doses every 4 weeks from Week 4 via a prefilled syringe or an autoinjector pen (SensoReady®). Changes in B- and T-cell subsets were analysed longitudinally in blood samples using fluorescence-activated cell sorting.

RESULTS

Ofatumumab treatment showed rapid and sustained depletion in total B-cells (CD19+CD45+) measured on Day 4 until Day 84 versus baseline. The median total B-cell levels decreased to =<5 cells/µL by Day 7 through Day 14 of the loading regimen and was maintained until the study end. An effective depletion of memory B-cells (CD19+CD45+CD27+) along with decrease in naïve B-cells (CD19+CD45+IgD+CD27-CD38^{dim}) was observed. Interestingly, a specific subset of T-cells (CD20+CD3+CD8+ T-cells), well-known to exhibit an activated phenotype, were also rapidly depleted, consistent with the previous findings from a primate study. By contrast, CD3+ T-cells were largely unaffected.

CONCLUSIONS

Ofatumumab 20 mg s.c. led to rapid and sustained depletion of both CD20+ B- and CD20+ T-cells in RMS patients.

Word count: 248/250 words

Funding statement

This study was supported by Novartis Pharma AG, Basel, Switzerland.

SUBMISSION REQUIREMENTS

Abstract Category

Oral Presentation

Topic of Choice

Ageing and dementia

Autonomic nervous system

Cerebrovascular diseases

Child neurology/developmental neurology

Clinical neurophysiology

Cognitive neurology/neuropsychology

Critical care

Education in neurology

Epilepsy

Ethics in neurology

Headache and pain

History of neurology

Infection and AIDS

Motor neurone diseases

Movement disorders

MS and related disorders

Muscle and neuromuscular junction disease

This study was funded by Novartis Pharma AG, Basel, Switzerland

Neurogenetics
Neuroimaging
Neuroimmunology
Neurological manifestations of systemic diseases
Neurology and arts
Neuro-oncology
Neuro-ophthalmology/ neuro-otology
Neurorehabilitation
Neurotoxicology/occupational neurology
Neurotraumatology
Peripheral nerve disorders
Sleep disorders
Spinal cord and root disorders