Longer-term Safety of Ofatumumab in Patients With Relapsing Multiple Sclerosis

1NSRO Department, University “Federico II” of Naples, Naples, Italy; 2UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA; 3Washington University School of Medicine, Saint Louis, Missouri, USA; 4Public Health and Preventive Medicine, Division of Infectious Diseases, Oregon Health and Sciences University, Portland, Oregon, USA; 5University of Muenster, Muenster, Germany; 6OhioHealth Multiple Sclerosis Center, Columbus, Ohio, USA; 7Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; 8Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; 9Novartis Pharma B.V., Amsterdam, The Netherlands; 10Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA; 11Novartis Healthcare Pvt. Ltd., Hyderabad, India; 12Novartis Pharma AG, Basel, Switzerland; 13Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) and MS Center, Departments of Head, Spine and Neuromedicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland

Oral presentation: OPR134
MS and Related Disorders: Monday; 27 June, 2022; 17.45-18.00 pm PDT

Oral Presentation at the European Academy of Neurology, Vienna; June25-28, 2022
Disclosures

Francesco Saccà served on advisory boards for Almirall, Argenx, Avexis, Biogen, Forward Pharma, Merck, Novartis, Pompoma, Roche, Sanofi, Alexion, and Takeda. He received public speaking or travel honoraria from Biogen, Mylan, Novartis, Roche, Sanofi, and Teva. He received honoraria from Almirall, Novartis, and Sanofi for educational editorial work. He received consultancy fees from Argenx, Forward Pharma, Novartis, and Novatek.

Stephen L. Hauser has received personal compensation from Annexon, Alector, Accure, and Neurona; he has also received travel reimbursement from F. Hoffmann-La Roche Ltd and Novartis for CD20-related meetings and presentations.

Anne H. Cross has received consulting fees, support, and honoraria from Biogen, Celgene, Bristol Myers Squibb, EMD Serono, Merck, Genentech, Roche, Greenwich Biosciences (Jazz Pharmaceuticals), Horizon Therapeutics, Janssen (subsidiary of Johnson & Johnson), Novartis, TG Therapeutics, Academic CME, Projects In Knowledge, CME Outfitters, WebMD, Conrad N. Hilton Foundation, Potomac Center for Medical Education, The Consortium of Multiple Sclerosis Centers, and ACTRIMS; has received a grant from the Department of Defense, USA; has been the secretary (elected) of The Consortium of Multiple Sclerosis Centers, member of the scientific advisory board of Race to Erase MS, program committee (chair) of ACTRIMS, member of the COVID-19 advisory committee of the National Multiple Sclerosis Society and National Multiple Sclerosis Society representative on the Progressive MS Alliance; has participated on the data safety monitoring board or advisory board for National Multiple Sclerosis Society, Novartis and EMD Serono, and holds a patent for "Yablonskiy DA, Sukstansky AL, Wen J, Cross AH. Methods for simultaneous multi-angular relaxometry of tissue using magnetic resonance imaging. Patent 15060-630 (015875).

Kevin Winthrop has received honoraria and/or support for contracted research from Pfizer, AbbVie, Union ChimiqueBelge, Eli Lilly & Company, Galapagos, GlaxoSmithKline, Roche, Gilead, BMS, Regeneron, Sanofi, AstraZeneca and Novartis.

Heinz Wiendl has received honoraria for acting as a member of scientific advisory boards for Biogen, Evgen, Genzyme, MedDay Pharmaceuticals, Merck Serono, Novartis, Roche Pharma AG, and Sanofi-Aventis, as well as speaker honoraria and travel support from Alexion, Biogen, Cognomed, F. Hoffmann-La Roche Ltd., Gemeinnützige Hertie-Stiftung, Merck Serono, Novartis, Roche Pharma AG, Genzyme, Teva, and WebMD Global. Heinz Wiendl is acting as a paid consultant for AbbVie, Actelion, Biogen, IGES, Johnson & Johnson, Novartis, Roche, Sanofi-Aventis, and the Swiss Multiple Sclerosis Society. His research is funded by the German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Else Kröner Freisius Foundation, Fresenius Foundation, the European Union, Hertie Foundation, NRW Ministry of Education and Research, Interdisciplinary Center for Clinical Studies (IZKF) Muenster and RE Children's Foundation, Biogen, GlaxoSmithKline GmbH, Roche Pharma AG, and Sanofi-Genzyme.

Jacqueline Nicholas has received a research grant from Biogen, Novartis, PCORI, Genentech, and University of Buffalo. He received consulting fees from Biogen, Bristol Myers Squibb, EMD Serono, Genentech, Greenwich Biosciences, Novartis, and TG therapeutics. He also received speaking honoraria from Alexion, BMS, EMD Serono, and Viola Bio.

Sven G. Meuth has received honoraria for consulting from Alexion, Almirall, Amicus Therapeutics Germany, Bayer Health Care, Biogen, Celgene, Diamed, Genzyme, MedDay Pharmaceuticals, Merck Serono, Novartis, Novo Nordisk, ONO Pharma, Roche, Sanofi-Aventis, Chugai Pharma, QuintilesIMS, and Teva. He received a research grant from the German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Else Kröner Freisius Foundation, Gemeinsamer Bundesausschuss (G-BA), German Academic Exchange Service, Hertie Foundation, Interdisciplinary Center for Clinical Studies (IZKF) Muenster, German Foundation Neurology and Alexion, Almirall, Amicus Therapeutics Germany, Biogen, Diamed, Fresenius Medical Care, Genzyme, HERZ Burgdorf, Merck Serono, Novartis, ONO Pharma, Roche, and Teva.

Paul S. Giacomini has received honoraria for consulting, speaking, and advisory board participation from Actelion, Alexion, Biogen Idec, Bristol Myers Squibb-Celgene, EMD Serono, Genzyme-Sanofi, Innomed Neurosciences, Novartis, Pendopharm, Roche, and Teva Neuroscience.

Ronald Zielman, Ayan Das Gupta, Xici Hu, Ratnakar Pingili, Roseanne Sullivan, Virginia DeLasHeras, and Wendy Su are employees of Novartis.

Ludwig Kappos’ institution (University Hospital Basel) has received the following exclusively for research support: steering committee, advisory board, and consultancy fees (Actelion, Addex, Bayer HealthCare, Biogen Idec, BioVista, Genzyme, Lilly, Merck, Mitsubishi, Novartis, Ono Pharma, Pfizer, Receptos, Sanofi, Santhera, Siemens, Teva, UCB, and Xenoport); speaker fees (Bayer HealthCare, Biogen Idec, Merck, Novartis, Sanofi, and Teva); and support for educational activities (Bayer HealthCare, Biogen, CSL Behring, 43)

Funding source: This study is supported by Novartis Pharma AG, Basel, Switzerland.

Acknowledgments: Writing support was provided by Amittha Thakur and Saimithra Thammera (employees of Novartis Healthcare Pvt. Ltd., Hyderabad, India). The final responsibility for the content lies with the authors.
Background and Objective

- Ofatumumab, a fully human anti-CD20 monoclonal antibody with a 20 mg subcutaneous monthly dosing regimen, is approved for treating relapsing multiple sclerosis (RMS) in adults\(^1\)

- In the Phase 3 ASCLEPIOS I/II trials, ofatumumab treatment up to 30 months had a favorable safety profile and was generally well tolerated in RMS patients\(^2\)

- Cumulative safety data of ofatumumab treatment for up to 3.5 years have shown that\(^3,4\)
 - Ofatumumab was well tolerated, with no new safety risks identified
 - Mean IgG levels remained similar to baseline values, whereas mean IgM levels decreased over time but stayed above the reference limit (LLN)

- Assessment of the longer-term safety of ofatumumab is important to further understand its benefit–risk profile (longer-term efficacy of ofatumumab is discussed in epresentation EPR161)

Objective

To assess the longer-term safety and tolerability of ofatumumab treatment for up to 4 years in patients with RMS

In the overall safety population, 86.5% patients (1703/1969) completed core studies and entered ALITHIOS.

Of these, 88.5% patients (1508/1703) were still receiving ofatumumab treatment at the time of data cut-off (25-Sep-2021).

*patients were either randomized to or switched to OMB during the core study.
Safety and Laboratory Assessments

Overall Safety
- Percentage of patients with at least one treatment emergent AEs or SAEs
 - Injection-related reactions
- AEs of Grade 3 or 4 (combined) severity
- AEs leading to ofatumumab discontinuation
- EAIRs\(^a\) per 100 PYs were estimated for all AEs

Laboratory Parameters
- Absolute serum IgG and IgM levels, lymphocyte, and neutrophil levels and percent change from baseline in IgG/IgM levels, lymphocyte, and neutrophil levels
 - Serum IgG/IgM, lymphocyte, and neutrophil levels were collected every 12 weeks up to W48, and every 24 weeks thereafter until EOS in the extension study
- Incidence of malignancies along with year wise IR of malignancy

Serious Infections and COVID-19
- Incidence of serious infections including opportunistic infections
- COVID-19 cases including infections post COVID-19 vaccination\(^1\)

Malignancies
- Incidence of malignancies along with year wise IR of malignancy

\(^a\)Exposure-adjusted incidence rates per 100 PYs are defined as the number of patients with a particular event during 100 years of exposure to a treatment, estimated by Poisson regression where patients were censored at time of first event; AEs, adverse events; EOS, end of study; Ig, immunoglobulin; IR, incidence rate; LLN, lower limit of normal; PYs, patient years; SAEs, serious adverse events; W, week.

Baseline Demographics and Disease Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Continuous ofatumumab (N=1292)</th>
<th>Newly Switched ofatumumab (N=677)</th>
<th>Overall ofatumumab (N=1969)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline from core study</td>
<td>Baseline from extension study</td>
<td></td>
</tr>
<tr>
<td>Age, years (mean±SD)</td>
<td>38.0±9.06</td>
<td>38.2±9.22</td>
<td>40.1±9.21</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>25.61±6.16</td>
<td>25.69±5.83</td>
<td>25.61±5.85</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>889 (68.8)</td>
<td>456 (67.4)</td>
<td>456 (67.4)</td>
</tr>
<tr>
<td>Time since MS symptom onset, years (mean±SD)</td>
<td>8.48±7.33</td>
<td>8.06±7.21</td>
<td>9.94±7.23</td>
</tr>
<tr>
<td>Time since diagnosis, years (mean±SD)</td>
<td>5.87±6.31</td>
<td>5.45±6.00</td>
<td>7.33±6.01</td>
</tr>
<tr>
<td>EDSS score at baseline, (mean±SD)</td>
<td>2.90±1.33</td>
<td>2.77±1.32</td>
<td>2.81±1.46</td>
</tr>
<tr>
<td>IgG levels at baseline, g/L (mean±SD)</td>
<td>10.31±2.24</td>
<td>10.35±2.09</td>
<td>10.23±2.14</td>
</tr>
<tr>
<td>IgM levels at baseline, g/L (mean±SD)</td>
<td>1.34±0.65</td>
<td>1.36±0.74</td>
<td>1.14±0.67</td>
</tr>
<tr>
<td>Median duration of time at risk, months</td>
<td>35.8</td>
<td>26.0</td>
<td>26.0</td>
</tr>
<tr>
<td>Total time at risk, PYs</td>
<td>3831.6</td>
<td>1366.2</td>
<td>1366.2</td>
</tr>
</tbody>
</table>

BMI, body mass index; EDSS, Expanded Disability Status Scale; Ig, immunoglobulin; MS, multiple sclerosis; PYs, patient years; SD, standard deviation.

For OMB newly-switched patients, their baseline values from extension study contribute to the overall summary.
Safety Profile of Ofatumumab Remained Consistent Across 4 years of Treatment in the Overall Safety Population

- Overall rate of AEs and SAEs remained consistent with the rates observed during the phase 3 ASCLEPIOS I/II trials.
- No new safety signals were identified.
- The most common AEs were infections; the most frequent infections in the overall safety population were nasopharyngitis (17.5%), upper respiratory tract infections (11.1%), urinary tract infections (10.9%), and COVID-19 (10.6%).

Table: Adverse Events Summary

<table>
<thead>
<tr>
<th>Adverse event</th>
<th>Core, ASCLEPIOS OMB (N=946)</th>
<th>Core + extension, Overall OMB, (N=1969)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (%)</td>
<td>EAIR (95% CI)</td>
<td>n (%)</td>
</tr>
<tr>
<td>Patients with at least one AE</td>
<td>791 (83.61) 188.55 [175.86, 202.16]</td>
<td>1698 (86.23) 135.11 [128.83, 141.69]</td>
</tr>
<tr>
<td>Patients with at least one SAE</td>
<td>86 (9.10) 5.39 [4.36, 6.65]</td>
<td>242 (12.30) 4.96 [4.37, 5.63]</td>
</tr>
<tr>
<td>AEs leading to OMB discontinuation</td>
<td>54 (5.70)</td>
<td>128a (6.50)</td>
</tr>
<tr>
<td>Infections and infestations</td>
<td>488 (51.58) 51.14 [46.80, 55.88]</td>
<td>1149 (58.35) 40.95 [38.65, 43.39]</td>
</tr>
<tr>
<td>Serious infections</td>
<td>24 (2.54) 1.44 [0.97, 2.15]</td>
<td>78 (4.01) 1.53 [1.23, 1.91]</td>
</tr>
<tr>
<td>Injection site reactions</td>
<td>103 (10.88) 7.21 [5.94, 8.74]</td>
<td>233 (11.83) 5.00 [4.40, 5.68]</td>
</tr>
<tr>
<td>Malignancies</td>
<td>5 (0.53) 0.32 [0.13, 0.77]</td>
<td>17 (0.86) 0.33 [0.20, 0.53]</td>
</tr>
<tr>
<td>Deaths</td>
<td>0 0</td>
<td>6b (0.30)</td>
</tr>
</tbody>
</table>

AE, adverse event; CI, confidence interval; EAIR, exposure adjusted incidence rate; OMB, ofatumumab; PT, preferred term; SAE, serious adverse event; aAEs related to reduced IgM levels is the most common reason for treatment discontinuation (71[3.6%]); PT for these 6 cases include: sudden death (n=1), completed suicide (n=1), COVID-19 and COVID-19 pneumonia (n=1), COVID-19 (n=1), intestinal metastasis (n=1), pneumonia and septic shock (n=1).
Incidence of Serious Infections Remained Stable Over Time and Did Not Increase with Longer-term Use up to 4 Years

- The most common serious infections were COVID-19 pneumonia / COVID-19 (n=23), appendicitis (n=13); most resolved without discontinuing ofatumumab treatment.
- There were three fatal cases due to serious infections, two were COVID-19 related and one was due to pneumonia and septic shock.
- The majority of serious infections were of Grade 3 severity or below.
- The overall rate of serious infections was consistent with Phase 3 ASCLEPIOS I/II trials (2.5%, EAIR: 1.44) and did not increase with treatment up to 4 years despite COVID-19 pandemic.
- One case of serious opportunistic infection of pneumocystis jirovecii pneumonia was reported; the final diagnosis was not confirmed by an external adjudication panel and the clinical course was not suggestive of pneumocystis jirovecii pneumonia.

Incidence of Serious Infections

- Total serious infections: n=78 (4%), EAIR: 1.53 [1.23,1.91]

Outcomes of Serious Infections

- 93.6% resolved
- 1.3% resolved with sequelae
- 3.8% unresolved
- 1.3% fatal

Severity of Serious Infections

- Grade 1: 3.85% (3.85%)
- Grade 2: 28.21% (60.25%)
- Grade 3: 7.69% (7.69%)
- Grade 4: 4 patients (5.13%)

Discontinuation of ofatumumab

- 4 patients (5.13%)

2. EAIR: exposure adjusted incidence rate.
Injection-related Reactions Were Mostly Mild-to-moderate in Severity and Non-serious in Nature

IRR's were predominantly reported with first injection and the incidence decreased with subsequent injections

Systemic IRRs
- **Initial dosing regimen**
 - Day 1
 - Day 7
 - Day 14
- **Monthly dosing regimen**
 - Month 1
 - Month 2
 - Month 3
 - Month 4
 - Month 5
 - Month 6
 - Month 7

Local-site IRRs
- **Initial dosing regimen**
 - Day 1
 - Day 7
- **Monthly dosing regimen**
 - Month 1
 - Month 2
 - Month 3
 - Month 4
 - Month 5
 - Month 6
 - Month 7

Systemic IRRs
- **99.2%** Mild-moderate in severity
- **99.4%** Non-serious
- **4 (0.6%)** Discontinued treatment in NS group

Local-site IRRs
- **99.5%** Mild-moderate in severity
- **99.6%** Non-serious
- **1 (0.1%)** Discontinued treatment in NS group

- Only limited benefit of premedication with corticosteroids, antihistamines, or acetaminophen was observed in RMS clinical trials; if injection-related reactions occur, symptomatic treatment is recommended
- Most common (≥5%) systemic IRR symptoms observed during all injections across all groups include fever, headache, chills, other systemic reactions and fatigue; local-site IRR symptoms (≥2%) include erythema/redness, other site reactions, pain, itching, and induration/swelling

IRR, injection-related reaction; NS, newly-switched.

IgG Levels Remained Stable Up to 4 Years of Treatment, While IgM Levels Decreased but Remained Above the LLN

- Mean serum IgG levels remained stable and above the LLN (5.65 g/L). Mean serum IgM levels decreased over time but remained above the LLN (0.40 g/L).
- Majority of patients had Ig levels above LLN (98.4% in IgG and 73.4% in IgM).
- For each baseline quartile, mean IgG levels were stable; whereas mean IgM levels in each baseline quartile decreased over time but stayed above the LLN for all quartiles from baseline to week 216.
- Treatment interruption/discontinuation was reported in 2 (0.1%)/4 (0.2%) patients due to low IgG; and 193 (9.8%)/71 (3.6%) patients due to low IgM.

**Switching period refers to the patients started with teriflunomide and not applicable to the patients with ofatumumab in core period; For TER/OMB group, data from 1st dose of TER until last dose of OMB plus 100 days/ analyses cut-off date have been used; R1: The first patient with first treatment emergent assessment in OMB period after switching to OMB (72 weeks); R2: The last patient with last treatment emergent assessment in TER period after switching to OMB (120 weeks); For all pooled analyses, a fixed value of LLN (using ALITHIOS study reference) was used: IgG: 5.65 g/L and IgM: 0.4 g/L; For core and extension study protocols, investigators were required to interrupt study treatment if IgM levels fell below 25th LLN or IgG levels fell below 10th LLN. The requirement to interrupt treatment due to low IgM or IgG levels was removed with protocol amendment 2 for study COMB157G2399 and is left to the discretion of the investigator; Treatment interruption PT due to low IgM include blood immunoglobulin M decreased, immunoglobulins decreased, hypogammaglobulinaemia and hypoglobulinaemia while for discontinuation include blood immunoglobulin M decreased, blood immunoglobulin M abnormal and hypogammaglobulinaemia while treatment interruption PT due to low IgG include blood immunoglobulin G decreased and for discontinuation include immunoglobulins decreased, blood immunoglobulin G abnormal, blood immunoglobulin G decreased; BL, baseline; Ig, immunoglobulin; LLN, lower limit of normal; OMB, ofatumumab; SE, standard error of the mean; TER, teriflunomide.
No Association Between Decreased IgG/IgM Levels and Risk of Serious Infections

Patients with ≥1 serious infection within 1 month prior and until 1 month after any series of drops in IgG/IgM <LLN

<table>
<thead>
<tr>
<th></th>
<th>IgM</th>
<th></th>
<th>IgG</th>
<th></th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><LLN (N=523†)</td>
<td>≥LLN (N=1443‡)</td>
<td><LLN (N=31†)</td>
<td>≥LLN (N=1935‡)</td>
<td>N=1969</td>
</tr>
<tr>
<td>n (%)</td>
<td>n (%)</td>
<td>EAIR§</td>
<td>n (%)</td>
<td>EAIR§</td>
<td>n (%)</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>Patients with ≥1 serious infection</td>
<td>6 (1.15)</td>
<td>1.32</td>
<td>55 (3.8)</td>
<td>1.45</td>
<td>1 (3.23)</td>
</tr>
<tr>
<td>Herpes zoster (PT)</td>
<td>1 (0.2)</td>
<td>0.22</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>URTI (PT)</td>
<td>1 (0.2)</td>
<td>0.22</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UTI (PT)</td>
<td>2 (0.4)</td>
<td>0.44</td>
<td>3 (0.21)</td>
<td>0.08</td>
<td>0</td>
</tr>
<tr>
<td>Bronchitis</td>
<td>1 (0.2)</td>
<td>0.22</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>0</td>
<td>0</td>
<td>8 (0.55)</td>
<td>0.21</td>
<td>1 (3.23)</td>
</tr>
<tr>
<td>COVID-19</td>
<td>1 (0.2)</td>
<td>0.22</td>
<td>11 (0.76)</td>
<td>0.29</td>
<td>0</td>
</tr>
</tbody>
</table>

- No association between decreased IgG/IgM levels and risk of serious infections was observed

† Number of patients with IgM/IgG <LLN at least once at any time during the post-baseline visits; ‡ Number of patients with no occurrence of IgM/IgG <LLN at least once at any time during the post-baseline visit; § IR per 100 PYs estimated via a Poisson regression model with only treatment as the factor and with the log-link and natural logarithm of time as the offset variable.

Ig, immunoglobulin; EAIR, exposure adjusted incidence rate; LLN, lower limit of normal; PT, preferred term; PY, patient year.
Lymphocyte and Neutrophil Levels Remained Stable Throughout 4 Years of Treatment

- A slight and transient decline (which was not <LLN) in the mean lymphocytes was observed up to W4 (%change: continuous, −11.9%; switch, −8.2%), followed by a reversal and then stabilized up to W216, in the continuous and switch groups.
- Mean neutrophil levels remained stable and above baseline for all visits up to Week 216 in continuous group while in the switch group, mean neutrophil levels decreased up to Week 4 and then stabilized while still receiving teriflunomide.
- EAIR of lymphopenia and neutropenia remained low [0.31 (95% CI: 0.19, 0.51)]; no apparent association was observed between low lymphocytes/neutrophil levels and risk of serious infections.

Switching period refers to the patients started with teriflunomide and not applicable to the patients with ofatumumab in core period; For TER/OMB group, data from 1st dose of TER until last dose of OMB plus 100 days/ analyses cut-off date have been used; R1: The first patient with first treatment emergent assessment in OMB period after switching to OMB (72 weeks); R2: The last patient with last treatment emergent assessment in TER period before switching to OMB (120 weeks); An increase in the mean neutrophil levels reaching baseline values was observed after switching from teriflunomide to ofatumumab; most events of lymphopenia and neutropenia were Grade 1/2 in severity; Effect of ofatumumab on lymphocytes and neutrophils are reported in separate poster: DMT11 presented at CMSC 2022.

BL, baseline; LLN, lower limit of normal; IR, incidence rate; OMB, ofatumumab; SE, standard error of the mean; TER, teriflunomide.
Most COVID-19 Cases were Non-serious, Mild to Moderate in Severity and the Majority of Patients Recovered\(^1,2\)

As of 25 Sep 2021, 245/1703 patients in ALITHIOS reported confirmed/suspected COVID-19

90.6% were mild to moderate

90.2% were non-serious

98.4% patients recovered

- 91% of COVID-19 cases were mild or moderate in severity and characterized as non-serious (90.2%)
- 98.4% of patients treated with ofatumumab recovered, recovered with sequelae, or were recovering from COVID-19
- Two patients\(^3\) had a fatal outcome, both were unvaccinated, and had co-morbidities of overweight, diabetes, and hypertension
- Majority (84.1%) of patients with COVID-19 did not experience treatment interruption with ofatumumab
- No patients had COVID-19 reinfection
- As of 25-Sep-2021 data cutoff, few COVID-19 cases (1.5%) after full vaccination were observed and mostly were mild to moderate and all recovered

\(^1\)N=1703 represents the enrolled population in the ALITHIOS study.
\(^2\)recovered includes recovered or recovered with sequelae or recovering at the time of data cutoff; \(^3\)at the time of data cutoff; \(^4\)first patient: 31/Male, 16.88 kg/m\(^2\); second patient: 47/Female, 25.77 kg/m\(^2\) (overweight as it’s > 25); COVID-19 outcomes are reported in separate poster: DMT36 presented at CMSC 2022.

Incidence Rates of Malignancy Did Not Increase Over Time in the Overall Patient Population

- Malignancies were reported in 17 patients (0.86%) with EAIRs of 0.33 (95% CI: 0.20, 0.53)
- EAIRs for malignancies did not increase over time in the overall ofatumumab population
- Median onset time since the first dose of ofatumumab was 301 days

<table>
<thead>
<tr>
<th>Malignancies</th>
<th>Overall ofatumumab, N=1969</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (EAIR), [95% CI]</td>
</tr>
<tr>
<td>All malignancies</td>
<td>17 (0.33), [0.20, 0.53]</td>
</tr>
<tr>
<td>Basal cell carcinoma</td>
<td>4 (0.08), [0.03, 0.21]</td>
</tr>
<tr>
<td>Invasive breast carcinoma</td>
<td>2 (0.04), [0.01, 0.15]</td>
</tr>
<tr>
<td>Other(^a) (1 patient each)</td>
<td>1 (0.02), [0.00, 0.14]</td>
</tr>
</tbody>
</table>

CI, confidence interval; CIF, cumulative incidence function; EAIR, exposure adjusted incidence rate; PY, patient years. *one patient each for breast cancer, intestinal metastasis, invasive ductal breast carcinoma, invasive lobular breast carcinoma, malignant melanoma in situ, non-Hodgkin’s lymphoma recurrent, esophageal squamous cell carcinoma, ovarian cancer, papillary renal cell carcinoma, renal cell carcinoma, and triple negative breast cancer.
Conclusions

• Cumulative safety data for up to 4 years indicates that extended treatment with ofatumumab is well-tolerated in patients with RMS, with no new safety risks identified
 o AEs and SAEs rates remain consistent with observations in the Phase 3 trials
 ▪ IRRs were mostly mild-moderate in severity and non-serious in nature
 o Rate of serious infections remained stable
 o Mean IgG levels remained stable
 ▪ No association between Ig levels and risk of serious infections
 o Most reported cases of COVID-19 were non-serious and the majority of patients recovered
 o No increase in risk of malignancies over time

• Combined with its sustained effectiveness (up to 4 years; representation EPR161), these findings support the favorable benefit–risk profile for ofatumumab in RMS patients