Efficacy of Ofatumumab on Microglial Activity in Patients with Relapsing Forms of Multiple Sclerosis: Interim Analysis

Tarun Singhal¹, Kelsey Carter¹, John Hunter Ficke¹, Preksha Kukreja¹, Eero Rissanen¹, Gauruv Bose¹, Bonnie Glanz¹, Jonathan Zurawski¹, Steven Cicero¹, Maria Houtchens¹, Christopher Severson¹, Shipra Dubey², Bo Yeun Yang², Brandon Brown³, Rohit Bakshi¹, Harald Kropshofer⁴, Tanuja Chitnis¹, Howard L Weiner¹, Marina Ziehn⁴

Oral presentation: 008

YYXYYXYYYYY

YYYYYXYYYYY

Session S14: MS Therapeutics; April 4, 2022

¹Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; ²Division of Nuclear Medicine, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; ³Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA; ⁴Novartis Pharma AG, Basel, Switzerland

Scan to download a copy of this presentation

Disclosures

Author Name	Disclosures
Tarun Singhal	Received compensation for consulting from Novartis. He has received research support from National MS Society, US Department of Defense, Nancy Davis Foundation's "Race to Erase MS" program, Harvard Neuro-Discovery Center, Novartis Pharmaceuticals, and Sanofi Genzyme.
Eero Rissanen	Received a research fellowship grant from Sigrid Juselius Foundation.
Gauruv Bose	Received an end MS post-doctoral fellowship award from the Multiple Sclerosis Society of Canada.
Maria Houtchens	Received consulting fees from Biogen, EMD Serono, Sanofi-Genzyme, Mallinckrodt, Roche, and research support from Biogen, EMD Serono, and Sanofi-Genzyme.
Rohit Bakshi	Received consulting fees from EMD Serono and research support from BMS/Celgene, EMD Serono, and Novartis.
Tanuja Chitnis	Received compensation for consulting from Biogen, Novartis Pharmaceuticals, Roche Genentech, and Sanofi Genzyme. She has received research support from the National Institutes of Health, National MS Society, US Department of Defense, Sumaira Foundation, Brainstorm Cell Therapeutics, EMD Serono, I-Mab Biopharma, Mallinckrodt ARD, Novartis Pharmaceuticals, Octave Bioscience, Roche Genentech, and Tiziana Life Sciences. Disclosures do not conflict with the work being presented.
Howard L Weiner	Received compensation for consulting from Tiziana Life Sciences and vTv Therapeutics. He has received research support from the Cure Alzheimer's Fund, Department of Defense, Genentech, Inc., National Institutes of Health, National Multiple Sclerosis Society, Novartis, and Sanofi Genzyme. He has stock options with vTv Therapeutics.
Kelsey Carter, John Hunter Ficke, Preksha Kukreja, Bonnie Glanz, Jon Zurawski, Steven Cicero, Christopher Severson, Shipra Dubey, Bo Yeun Yang	Nothing to disclose.
Brandon Brown, Harald Kropshofer, Marina Ziehn	Employees of Novartis.

Funding source: This study is supported by Novartis Pharma AG, Basel, Switzerland.

Acknowledgments: Editorial support was provided by **Grace Jeong, PhD** of Alphabet Health, New York, NY, USA and was funded by Novartis Pharmaceuticals Corporation. This presentation was developed in accordance with Good Publication Practice (GPP3) guidelines. Authors had full control of the content and made the final decision on all aspects of this presentation.

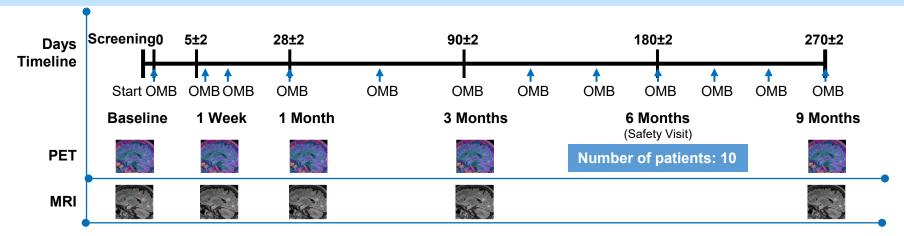
Introduction

- Microglia are innate immune cells of the central nervous system and overactivation of microglia has been implicated in the pathogenesis of multiple sclerosis (MS)¹
- In animal models, B-cell depletion using anti-CD20 antibodies led to reduced microglial activation and lesion formation²
- Upon activation, human microglia cells form clusters in active lesion rims and in normal tissue. These clusters are detectable via targeting the glial marker 18-kilodalton translocator protein (TSPO)³
- A quantitative TSPO PET scan with a second-generation 18F-PBR06 ligand has been used to assess the microglial activation in patients with MS⁴
- Ofatumumab (OMB) is a fully human anti-CD20 monoclonal antibody approved for the treatment of relapsing forms of MS (RMS) in adults
- The potential impact of OMB on microglial activation in MS is currently unknown

Objective

To determine the effect of OMB on microglial activation in relation to changes in serum markers, MRI abnormalities, and clinical impairment longitudinally over 9 months using [F-18]PBR06-PET in patients with RMS

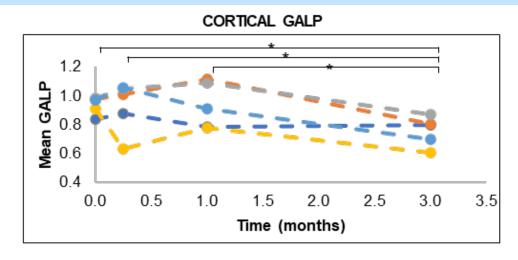
Study Design, Objectives, & Methods


Primary objective

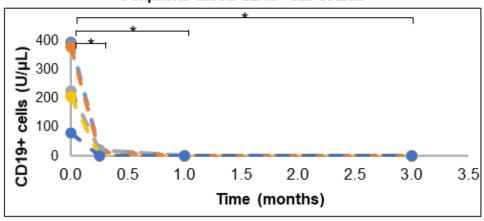
 To determine the effect of OMB on microglial activation over
9 months in patients with RMS

Secondary objectives

- To determine the time course of effect of OMB on microglial activation and its relationship at Days 5, 28, 90 and 273 with peripheral B-cell depletion, serum NfL chain, GFAP levels, and other serum biomarkers (IP-10, ITAC, MCP-1 and MIP-3b)
- To determine the relationship of PET changes following OMB initiation with 3T MRI changes (including QSM) and clinical parameters (EDSS, T25FW, MFIS, relapses)

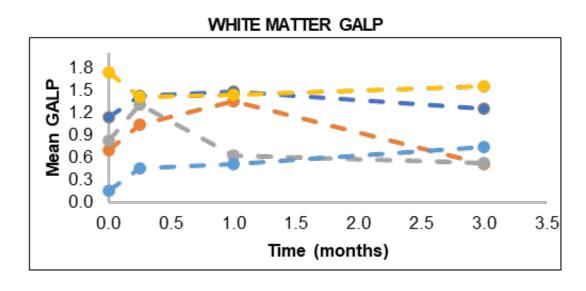


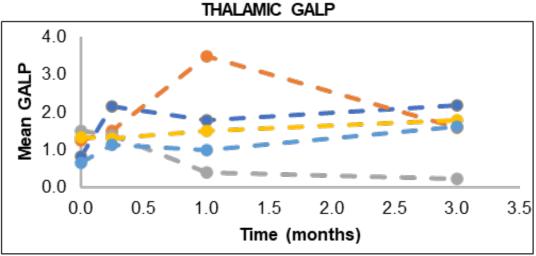
Study Methods


- This is an interim analysis of an open-label, single-center, observational, prospective, 9-month study in 10 patients with active RMS
- [F-18]PBR06-PET scans were performed in RMS patients (prior to and at Days 5, 28 and 90 after initiating OMB)
- Peripheral CD19 counts and clinical evaluations were also performed
- Individualized z-score maps of brain parenchymal microglial activation were generated by a voxel-by-voxel comparison between each subject's PET standardized uptake value ratio images and a control dataset of nine healthy individuals
- Glial activity load on PET (GALP) was calculated as the sum of voxel-by-voxel z-scores >4 in the lesional and perilesional normal-appearing white matter, cortical grey matter and thalamic regions of interest in the standard atlas space
- All parameters assessed over 90 days were compared with baseline values

Results: Early effect on microglia: Cortical PET is reduced at 3 months

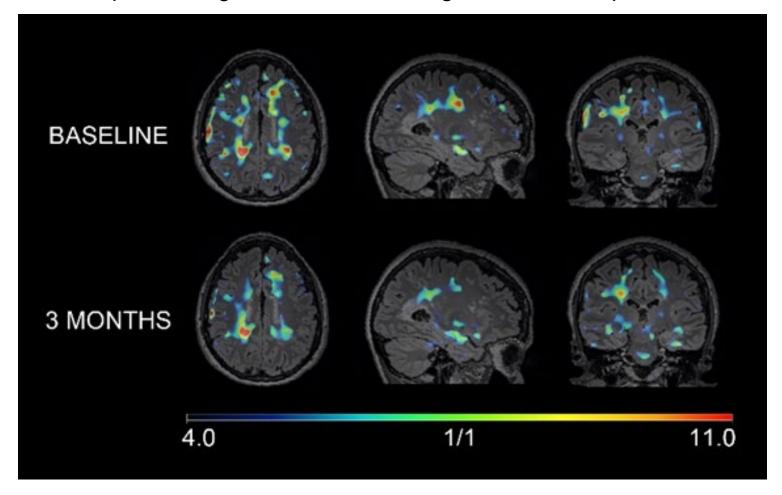
- Twenty [F-18]PBR06 PET scans were performed in 5 RMS patients:
 - Mean ± SD age, 40.2 ± 12 years
 - 4 females
 - Median EDSS score, 3.0
 - Patient enrollment has been completed as of March, 2022
- After OMB initiation, the mean CGM-GALP decreased significantly versus baseline at Day 90 (0.75±0.09 vs. 0.93±0.06; -19.4%, p<0.05), but not at Days 5 or 28
- Absolute and percentage CD19 counts were significantly decreased at Day 5 versus baseline (11.5±9.1 vs. 256.6±117.4 cells/μL; -96%, p=0.01 and 0.98±0.98% vs. 14.7±8.7%; -93%, p=0.02, respectively), which persisted at Day 90 (data not shown)


Peripheral blood CD19+ cell counts



*p<0.05

Results


• There was no statistically significant difference in mean GALP scores in thalamic, lesional, and perilesional, or in clinical measurements over 90 days (all p>0.05)

Results: Individualized z-score mapping of the TSPO-PET signal in RMS

Fused PET/MRI maps showing a reduced TSPO signal in an RMS patient at 3 months after starting OMB

Conclusions

- This is the first study to evaluate the effect of OMB on microglial activation and its relationship with serum markers of neurodegeneration
- In this interim analysis, OMB treatment was associated with decreased CGM microglial activation at 3 months and was preceded by peripheral CD19+ cell depletion at Day 5, which may suggest an indirect, downstream effect of B-cell depletion on microglial activity in RMS patients