Safety and Tolerability of Conversion to Siponimod With and Without Titration in Patients with Advancing Forms of RMS: Interim Results of the Phase 3b EXCHANGE Study

Amit Bar-Or¹, Bianca Weinstock-Guttman², Yang Mao-Draayer³, Linda-Ali Cruz⁴, Xiangyi Meng⁴, Gina Mavrikis Cox⁴, Stanley L Cohan⁵

¹Center for Neuroinflammation and Experimental Therapeutics, and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; ²Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; ³Autoimmunity Center of Excellence, Multiple Sclerosis Center, University of Michigan, Ann Arbor, MI, USA; ⁴Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA; ⁵Providence Multiple Sclerosis Center, Providence Brain and Spine Institute, Portland, OR, USA

Poster number: 007 (Neighborhood 4) Session name: P7 (MS Therapeutics MOA and Safety 2) Session time: Monday, April 4, 8:00 AM - 9:00 PM

Poster Presentation at the American Academy of Neurology (AAN) 2022, April 2-7, 2022

Scan to download a copy of this presentation

Author Name	Disclosures
Amit Bar-Or	Participated as a speaker in meetings sponsored by, and received consulting fees and/or grant support from, Actelion, Atara Biotherapeutics, Biogen Idec, Celgene/ Receptos, Genentech/Roche, Mapi, MedImmune, Merck/EMD Serono, Novartis and Sanofi.
Bianca Weinstock-Guttman	Received consulting fees from Biogen, Celgene, EMD Serono, Genentech and Janssen, and research support from Biogen, Celgene, EMD Serono, Genentech and Novartis.
Yang Mao-Draayer	Received research support from NIH NINDS R01-NS080821, NIAID Autoimmune Center of Excellence UM1-AI110557, UM1 AI144298-01, PCORI, Sanofi-Genzyme, Genentech-Roche, Novartis, and Chugai; consulting/speaker fees from Acorda, Biogen, Bayer Pharmaceutical, Celgene/Bristol Myers Squibb, Teva, Genentech-Roche, Novartis, Janssen, Sanofi-Genzyme, and EMD Serono.
Linda-Ali Cruz, Xiangyi Meng, and Gina Mavrikis Cox	Employees of Novartis Pharmaceuticals Corporation.
Stanley L Cohan	Received speaking fees from Biogen, Bristol Myers Squibb, Novartis, Roche/Genentech and Sanofi Genzyme, serves on advisory boards or as a consultant to Biogen, EMD Serono, Novartis and Sanofi Genzyme, and receives institutional research support (Providence Brain and Spine Institute) from Adamas, Biogen, Novartis, Roche/Genentech and Sanofi Genzyme.

Funding source: This study is supported by Novartis Pharmaceuticals Corporation.

Acknowledgments: Editorial support was provided by **Juliel Espinosa**, **PhD**, of Alphabet Health (New York, NY) and was funded by Novartis Pharmaceuticals Corporation. This poster was developed in accordance with Good Publication Practice (GPP3) guidelines. Authors had full control of the content and made the final decision on all aspects of this poster.

Background & Objective

Background

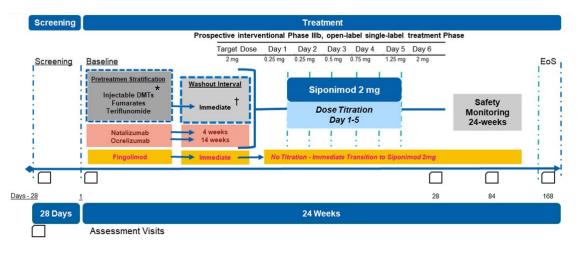
- Siponimod (Mayzent®) is an oral sphingosine 1-phosphate (S1P) receptor type 1, 5 modulator that reduces relapses and disability progression in
 patients with secondary progressive multiple sclerosis (SPMS)^{1,2}
 - Approved in the USA for adults with relapsing MS (RMS), including clinically isolated syndrome (CIS), relapsing-remitting MS (RRMS) and active SPMS³
 - o Indicated in EU for adults with active SPMS as shown by relapses or magnetic resonance imaging (MRI) inflammatory activity⁴
 - o Indicated in Japan and Australia for SPMS^{5, 6}
- Transient heart rate decreases following first dose are an expected effect of S1P receptor modulator drug class
 - o Siponimod dose titration can mitigate this effect
- In clinical practice, patients may switch to siponimod following discontinuation of their disease modifying therapy (DMT)
 - o It is important to study whether washout is required when converting to siponimod
- EXCHANGE (NCT03623243) is a Phase 3b trial of safety and tolerability of immediate conversion to dose-titrated siponimod from other DMTs in
 patients with advancing RMS

Objective

 To report interim analyses of EXCHANGE, evaluating safety and tolerability of converting to siponimod from other DMTs with and without dose titration

1. Kappos L, et al. *Lancet*. 2018;391:1263–1273. 2. Selmaj K, et al. *Lancet Neurol*. 2013;12:756-767. 3. Novartis Pharmaceuticals Corporation. Prescribing information. Mayzent® 2022. Available from: https://www.novartis.us/sites/www.novartis.us/files/mayzent.pdf (Accessed March 10, 2022). 4. European Medicines Agency. EPAR. Mayzent® 2020. Available from: https://www.ema.europa.eu/en/documents/product-information/mayzent-epar-product-information_en.pdf (Accessed March 10, 2022). 5. PMDA. Mayzent® 2020. Available from: https://www.pmda.go.jp/files/000241414.pdf (Accessed March 10, 2022). 6. Australian Product Information. Mayzent® 2019. Available from: https://www.tga.gov.au/sites/default/files/auspar-siponimod-191211-pi.pdf (Accessed March 10, 2022).

Background & Objective Methods Conclusions



Methods: Study Design, Patient Population, and Endpoints

- This 6-month, prospective, multicenter, open label, single arm trial has recently completed enrollment; the current analysis is representative of an interim dataset
- Analysis included patients aged 18-65 years with advancing forms of RMS, EDSS 2.0–6.5, and on continuous oral/injectable DMTs for ≥3 months at time of consent
- Uniquely, some patients participated in a virtual cohort, which enabled certain visits to be conducted virtually, allowing for flexible participation during the COVID-19 pandemic
- Most patients initiating siponimod were titrated from 0.25 to 2 mg over 6 days
 - Patients transitioning from teriflunomide required 11-14 days' accelerated washout with cholestyramine or activated charcoal
 - Patients transitioning from natalizumab or ocrelizumab required ≥4- or ≥14-week washout period, respectively
 - Those converting from fingolimod immediately switched to siponimod 2 mg, with no dose-titration

EXCHANGE study design

- **Primary endpoint:** AEs suspected to be related to siponimod over 6 months of treatment
- Secondary endpoints:
 - Any AE or hospitalizations
 - \circ $\,$ Change in heart rate from baseline to 6 hours after first dose

*Injectable DMTs: IFN beta-1a, IFN beta-1b, glatiramer acetate, pegylated IFN beta-1a. †Defined as cessation of existing DMT and initiation of siponimod within 24 hours, followed by subsequent 5-day dose titration. COVID-19, coronavirus 2019; DMT, disease modifying therapy; EoS, end of study; EoT, end of treatment; EDSS, Expanded Disability Status Scale; RMS, relapsing multiple sclerosis.

Results: EXCHANGE Patient Disposition & Exposure

- 163 patients from 42 US centers were eligible for inclusion in the safety analysis
 - 65.0% completed the study phase, 16.6% were receiving ongoing treatment, and 18.4% discontinued treatment

Siponimod, N=163 Patient disposition n (%) **Study phase** Ongoing treatment* 27 (16.6) **Discontinued treatment** 30 (18.4) Completed study phase 106 (65.0) Primary reason for premature discontinuation Patient decision 15 (9.2) Adverse event 11 (6.7) Physician decision 3 (1.8) New therapy for study indication 1 (0.6) Siponimod exposure Median (min-max) Exposure (days) 168.0 (1-198) Compliance (overall)** 100% ^{*}patients have not reached end of study visit **n=153

Max, maximum; min, minimum; N, number of patients; n, number of observations.

Background & Objective Methods Conclusions

Results: Patient Demographics and Baseline Characteristics

- 163 patients from 42 US centers were eligible for inclusion in the safety analysis
 - 74.2% were female, mean age was 46.6 years, and mean baseline EDSS score was 3.9
- EXCHANGE has enrolled a diverse patient demographic, including 22.1% who identified as Hispanic/Latino, and 14.1% as Black/African American
- At screening, 76.7% had RRMS, 20.2% SPMS, 2.5% PPMS, and 0.6% single demyelinating event

EDSS, Expanded Disability Status Scale; MS, multiple sclerosis; N, number of patients; n, number of observations; PPMS, primary progressive multiple sclerosis; RRMS, relapsing-remitting multiple sclerosis; SD, standard deviation; SPMS, secondary progressive multiple sclerosis.

	Siponimod, N=163
Baseline characteristics	
Age (years), mean (SD)	46.6 (10.3)
Females, n (%)	121 (74.2)
Race, n (%)	
White	138 (84.7)
Black or African American	23 (14.1)
Asian	2 (1.2)
Ethnicity, n (%)	
Hispanic or Latino	36 (22.1)
Not Hispanic or Latino	126 (77.3)
Not Reported	1 (0.6)
EDSS score, mean (SD)	3.9 (1.5)
Type of MS at study entry, n (%)	
Single demyelinating event	1 (0.6)
PPMS	4 (2.5)
SPMS	33 (20.2)
RRMS	125 (76.7)
Time since MS diagnosis (years), mean (SD)	12.2 (8.7)

Background & Objective

Methods

Conclusions

Results: Patient Baseline Characteristics and Prior Treatments

Bar-Or et al. P7.007

Siponimod, N=163

- The majority of patients (54%) had no relapses in the year prior to screening
- Most common prior DMTs were oral and injection therapies: 30.7% fingolimod, 27.7% glatiramer acetate/IFNβ, 20.9% dimethyl fumarate, and 17.2% teriflunomide

Relapses in 12 months before screening, n (%)				
0	88 (54.0)			
1	57 (35.0)			
2	10 (6.1)			
3	6 (3.7)			
≥4	2 (1.2)			
Relapses in 12-24 months before screening, n (%)				
0	86 (52.8)			
1	39 (23.9)			
2	24 (14.7)			
3	7 (4.3)			
≥4	7 (4.3)			
Previous MS treatments, n (%) [duration (months), mean (SD)] ^a				
Previously treated patients	163 (100)			
Fingolimod	50 (30.7) [48.3 (31.0)]			
Glatiramer acetate	26 (16.0) [83.4 (68.7)]			
Dimethyl fumarate	34 (20.9) [34.9 (25.9)]			
Any IFNβ	19 (11.7) [82.7 (65.6)]			
Teriflunomide	28 (17.2) [29.6 (26.9)]			
Natalizumab	1 (0.6) [3.9 (NA)]			
Ocrelizumab	5 (3.1) [15.2 (12.7)]			
^a Duration of previous MS treatments before switching to sipominod (months)				

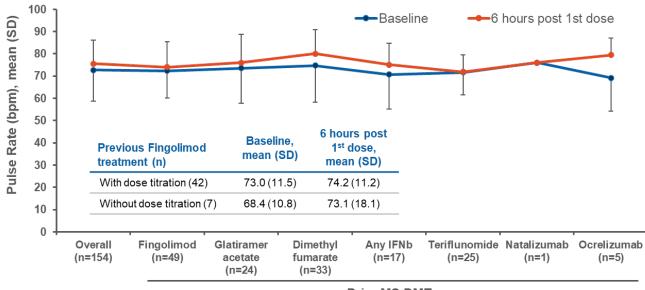
Relanses in 12 months before screening n (%)

DMT, disease modifying therapy; IFN, interferon; MS, multiple sclerosis; N, number of patients; n, number of observations; SD, standard deviation.

Background & Objective

Methods

Results


Conclusions

Results: Effect of Siponimod Conversion on Heart Rate

Mean heart rate at baseline and 6-hour post first dose by prior MS DMTs

- There was no decrease in heart rate at 6 hours post first dose from baseline in the overall or any of the prior DMT groups
- In the fingolimod subgroup (n=7) who were switched to siponimod without dose titration, mean heart rate (SD) was 73.1 bpm (18.1) at 6 hours post 1st dose vs 68.4 bpm (10.8) at baseline

Prior MS DMTs

bpm, beats per minute; DMT, disease modifying therapy; IFN, interferon; MS, multiple sclerosis; N, number of patients; n, number of observations; SD, standard deviation.

Background & Objective Methods Results Conclusions

Results: Safety

 In safety analysis, 31.3% of patients reported ≥1 AE possibly related to siponimod treatment

AE, adverse event; CI, confidence interval; IFN, interferon; SAE, serious adverse event; DMT, disease modifying therapy; N, number of patients; n, number of observations.

Incidence of AEs	Siponimod, N=163 n (%)	95% CI
Summary of AEs		
Patients with ≥1 AE	115 (70.6)	-
Patients with ≥1 SAE	8 (4.9)	-
Patients with ≥1 AE leading to permanent drug discontinuation	11 (6.7)	-
Patients with ≥1 AE possibly related to study medication	51 (31.3)	(24.4, 39.1)
Most common AEs by preferred term (≥ to 3%)		
Headache	13 (8.0)	(4.5, 13.5)
Dizziness	7 (4.3)	(1.9, 9.0)
Nausea	6 (3.7)	(1.5, 8.2)
Bradycardia	5 (3.1)	(1.1, 7.4)
Fatigue	5 (3.1)	(1.1, 7.4)
Infections and infestations		
Urinary tract infection	4 (2.5)	(0.8, 6.6)
Oral herpes	2 (1.2)	(0.2, 4.8)
Incidence of AEs possibly related to study medication by prior DMTs	Siponimod, n/N (%)	95% CI
Fingolimod	16/50 (32.0)	(19.9, 46.8)
Glatiramer acetate	9/26 (34.6)	(17.9, 55.6)
Dimethyl fumarate	8/34 (23.5)	(11.4, 41.6)
Any IFNβ	4/19 (21.1)	(7.0, 46.1)
Teriflunomide	11/28 (39.3)	(22.1, 59.3)
Ocrelizumab	3/5 (60.0)	(17.0, 92.7)

The patient on natalizumab experienced ≥1 AE (visual impairment)

Methods

Background & Objective

Results

Conclusions

Bar-Or et al. P7.007

- In this interim analysis, immediate conversion over 6 days from other DMTs to siponimod was generally well tolerated, with no unexpected findings
- Furthermore, there was no evidence of a meaningful reduction in heart rate when initiating siponimod in the overall group or in subgroups stratified by prior DMTs, including subjects transitioning from fingolimod to siponimod without dose titration
- EXCHANGE will provide clinically relevant data to HCPs in providing management guidelines for switching patients to siponimod from other DMTs

DMT, disease-modifying therapy; HCP, healthcare provider.

Background & Objective

Methods

Conclusions

